Bone-Market-Solver/bonemarketsolver/__main__.py

155 lines
4.7 KiB
Python
Raw Normal View History

import argparse
import curses
from .objects.blacklistaction import BlacklistAction
from .objects.bonemarketargumentparser import BoneMarketArgumentParser
from .objects.enumaction import EnumAction
from .objects.listaction import ListAction
from .solve import *
2021-08-24 11:08:42 +00:00
from .read_char import *
parser = BoneMarketArgumentParser(
prog='Bone Market Solver',
description="Devise the optimal skeleton at the Bone Market in Fallen London.",
fromfile_prefix_chars="@",
argument_default=argparse.SUPPRESS,
)
parser.add_argument(
"-l", "--list",
action=ListAction,
default=ListAction.list_options,
choices=ListAction.list_options,
nargs=argparse.ZERO_OR_MORE,
help="list specified enumerations and their names and exit",
dest=argparse.SUPPRESS
)
world_qualities = parser.add_argument_group(
"world qualities",
"Parameters shared across Fallen London, often changing on a routine basis"
)
world_qualities.add_argument(
"-f", "--bone-market-fluctuations",
action=EnumAction,
type=Fluctuation,
help="current value of Bone Market Fluctuations, which grants various bonuses to certain buyers",
dest='bone_market_fluctuations'
)
world_qualities.add_argument(
"-m", "--zoological-mania",
action=EnumAction,
type=Declaration,
help="current value of Zoological Mania, which grants a percentage bonus to value for a certain declaration",
dest='zoological_mania'
)
world_qualities.add_argument(
"-o", "--occasional-buyer",
action=EnumAction,
type=OccasionalBuyer,
help="current value of Occasional Buyer, which allows access to a buyer that is not otherwise available",
dest='occasional_buyer'
)
world_qualities.add_argument(
"-d", "--diplomat-fascination",
action=EnumAction,
type=DiplomatFascination,
help="current value of The Diplomat's Current Fascination, which determines what the Trifling Diplomat is interested in",
dest='diplomat_fascination'
)
skeleton_parameters = parser.add_argument_group(
"skeleton parameters",
"Parameters that determine what you want the solver to produce"
)
skeleton_parameters.add_argument(
"-s", "--shadowy",
type=int,
2021-08-24 11:08:42 +00:00
default=Char.SHADOWY.value,
help="the effective level of Shadowy used for selling to buyers",
dest='shadowy_level'
)
skeleton_parameters.add_argument(
"-b", "--buyer", "--desired-buyer",
action=EnumAction,
nargs=argparse.ONE_OR_MORE,
type=Buyer,
help="specific buyer that skeleton should be designed for (if multiple are specified, will choose from among them)",
dest='desired_buyers'
)
skeleton_parameters.add_argument(
"-c", "--cost", "--maximum-cost",
type=int,
help="maximum number of pennies that should be invested in skeleton",
dest='maximum_cost'
)
skeleton_parameters.add_argument(
"-e", "--exhaustion", "--maximum-exhaustion",
type=int,
help="maximum exhaustion that skeleton should generate",
dest='maximum_exhaustion'
)
skeleton_parameters.add_argument(
"--blacklist",
action=BlacklistAction,
nargs=argparse.ONE_OR_MORE,
help="components, options, or buyers that should not be used by the solver",
metavar="Enum.MEMBER",
dest='blacklist'
)
solver_options = parser.add_argument_group(
"solver options",
"Options that affect how the solver behaves"
)
solver_options.add_argument(
"-v", "--verbose",
action=argparse.BooleanOptionalAction,
help="whether the solver should output search progress rather than showing intermediate solutions",
dest='verbose'
)
solver_options.add_argument(
"-t", "--time-limit",
type=float,
help="maximum number of seconds that the solver runs for",
dest='time_limit'
)
solver_options.add_argument(
"-w", "--workers",
type=int,
help="number of search worker threads to run in parallel (default: one worker per available CPU thread)",
dest='workers'
)
args = parser.parse_args()
arguments = vars(args)
if not arguments.pop('verbose', False):
def WrappedSolve(stdscr, arguments):
# Prevents crash if window is too small to fit text
stdscr.scrollok(True)
# Move stdscr to last position
arguments['stdscr'] = stdscr
return Solve(**arguments)
print(curses.wrapper(WrappedSolve, arguments))
else:
print(Solve(**arguments))