Add worker/threads flag #1

Merged
TheTaques merged 2 commits from patch-1 into main 2021-06-18 21:18:40 +00:00
Showing only changes of commit 228beb8f6c - Show all commits

View File

@ -1,10 +1,14 @@
import functools
import enum
import os
"""Use constraint programming to devise the optimal skeleton at the Bone Market in Fallen London."""
__all__ = ['Declaration', 'Fluctuation', 'OccasionalBuyer', 'Solve']
__author__ = "Jeremy Saklad"
import argparse
import curses
from enum import Enum
from functools import reduce
from os import cpu_count
from enum import auto
from ortools.sat.python import cp_model
# This multiplier is applied to the profit margin to avoid losing precision due to rounding.
@ -19,8 +23,9 @@ DIFFICULTY_SCALER = 0.6
# This is the effective level of Shadowy used for attempting to sell.
SHADOWY_LEVEL = 300
# The number of pennies needed to produce a quality.
class Cost(enum.Enum):
class Cost(Enum):
"""The number of pennies needed to produce a quality."""
# This is your baseline EPA: the pennies you could generate using an action for a generic grind.
ACTION = 400
@ -325,8 +330,9 @@ class Cost(enum.Enum):
WITHERED_TENTACLE = (ACTION + 5*WARM_AMBER)/3
# Adds a fully-reified implication using an intermediate Boolean variable.
def NewIntermediateBoolVar(self, name, expression, domain):
"""Add a fully-reified implication using an intermediate Boolean variable."""
intermediate = self.NewBoolVar(name)
self.AddLinearExpressionInDomain(expression, domain).OnlyEnforceIf(intermediate)
self.AddLinearExpressionInDomain(expression, domain.Complement()).OnlyEnforceIf(intermediate.Not())
@ -336,17 +342,20 @@ setattr(cp_model.CpModel, 'NewIntermediateBoolVar', NewIntermediateBoolVar)
del NewIntermediateBoolVar
# Adds an approximate exponentiation equality using a lookup table.
# Set `upto` to a value that is unlikely to come into play.
def AddApproximateExponentiationEquality(self, target, var, exp, upto):
"""Add an approximate exponentiation equality using a lookup table.
Set `upto` to a value that is unlikely to come into play.
"""
return self.AddAllowedAssignments([target, var], [(int(base**exp), base) for base in range(upto + 1)])
setattr(cp_model.CpModel, 'AddApproximateExponentiationEquality', AddApproximateExponentiationEquality)
del AddApproximateExponentiationEquality
# Adds a multiplication equality for any number of terms using intermediate variables.
def AddGeneralMultiplicationEquality(self, target, *variables):
"""Add a multiplication equality for any number of terms using intermediate variables."""
# This is used for producing unique names for intermediate variables.
term_index = 1
@ -357,15 +366,16 @@ def AddGeneralMultiplicationEquality(self, target, *variables):
self.AddMultiplicationEquality(intermediate, [a, b])
return intermediate
product = functools.reduce(function, variables)
product = reduce(function, variables)
return self.Add(target == product)
setattr(cp_model.CpModel, 'AddGeneralMultiplicationEquality', AddGeneralMultiplicationEquality)
del AddGeneralMultiplicationEquality
# An action that affects a skeleton's qualities.
class Action:
"""An action that affects a skeleton's qualities."""
def __init__(self, name, cost, torso_style = None, value = 0, skulls_needed = 0, limbs_needed = 0, tails_needed = 0, skulls = 0, arms = 0, legs = 0, tails = 0, wings = 0, fins = 0, tentacles = 0, amalgamy = 0, antiquity = 0, menace = 0, implausibility = 0, counter_church = 0, exhaustion = 0):
self.name = name
@ -430,8 +440,9 @@ class Action:
return str(self.name)
# Actions that initiate a skeleton.
class Torso(enum.Enum):
class Torso(Enum):
"""An action that initiates a skeleton."""
HEADLESS_HUMANOID = Action(
"Reassemble your Headless Humanoid",
cost = Cost.ACTION.value + Cost.HEADLESS_SKELETON.value,
@ -520,7 +531,8 @@ class Torso(enum.Enum):
menace = 2
)
LEVIATHAN_FRAME = Action("Build on the Leviathan Frame",
LEVIATHAN_FRAME = Action(
"Build on the Leviathan Frame",
cost = Cost.ACTION.value + Cost.LEVIATHAN_FRAME.value,
torso_style = 70,
value = 31250,
@ -558,8 +570,9 @@ class Torso(enum.Enum):
return str(self.value)
# Actions that are taken immediately after starting a skeleton.
class Skull(enum.Enum):
class Skull(Enum):
"""An action that is taken immediately after starting a skeleton."""
BAPTIST_SKULL = Action(
"Duplicate the skull of John the Baptist, if you can call that a skull",
cost = Cost.ACTION.value + 500*Cost.BONE_FRAGMENT.value + 10*Cost.PEPPERCAPS.value,
@ -701,8 +714,9 @@ class Skull(enum.Enum):
def __str__(self):
return str(self.value)
# Actions that are taken once all skulls are added to a skeleton.
class Appendage(enum.Enum):
class Appendage(Enum):
"""An action that is taken once all skulls are added to a skeleton."""
# Cost from this scales with limbs and is partially implemented separately
ADD_JOINTS = Action(
"Add four more joints to your skeleton",
@ -739,7 +753,8 @@ class Appendage(enum.Enum):
menace = -1
)
BLACK_STINGER = Action("Apply a Jet Black Stinger to your (Skeleton Type)",
BLACK_STINGER = Action(
"Apply a Jet Black Stinger to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.BLACK_STINGER.value,
value = 50,
tails_needed = -1,
@ -921,8 +936,9 @@ class Appendage(enum.Enum):
return str(self.value)
# Actions that are taken after all parts have been added to a skeleton.
class Adjustment(enum.Enum):
class Adjustment(Enum):
"""An action that is taken after all parts have been added to a skeleton."""
CARVE_AWAY_AGE = Action(
"Carve away some evidence of age",
cost = Cost.ACTION.value,
@ -945,8 +961,9 @@ class Adjustment(enum.Enum):
return str(self.value)
# Which kind of skeleton is to be declared.
class Declaration(enum.Enum):
class Declaration(Enum):
"""An action that is taken after all adjustments have been made to a skeleton."""
AMPHIBIAN = Action(
"Declare your (Skeleton Type) a completed Amphibian",
cost = Cost.ACTION.value
@ -1007,8 +1024,9 @@ class Declaration(enum.Enum):
return str(self.value)
# Actions taken after a declaration is made.
class Embellishment(enum.Enum):
class Embellishment(Enum):
"""An action is taken after a declaration has been made for a skeleton."""
MORE_PLAUSIBLE = Action(
"Make it seem just a bit more plausible",
cost = Cost.ACTION.value + Cost.REVISIONIST_NARRATIVE.value,
@ -1025,8 +1043,9 @@ class Embellishment(enum.Enum):
return str(self.value)
# A way to convert a skeleton into revenue.
class Buyer(enum.Enum):
class Buyer(Enum):
"""An action that converts a skeleton into revenue."""
A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES = Action(
"Sell a complete skeleton to the Bone Hoarder",
cost = Cost.ACTION.value
@ -1140,13 +1159,15 @@ class Buyer(enum.Enum):
def __str__(self):
return str(self.value)
# Which skeleton attribute is currently boosted.
class Fluctuation(enum.Enum):
class Fluctuation(Enum):
"""Which skeleton attribute is currently boosted."""
ANTIQUITY = 1
AMALGAMY = 2
# Which of several unusual buyers are available.
class OccasionalBuyer(enum.Enum):
class OccasionalBuyer(Enum):
"""Which of several unusual buyers are available."""
AN_ENTHUSIAST_IN_SKULLS = [Buyer.AN_ENTHUSIAST_IN_SKULLS]
A_DREARY_MIDNIGHTER = [Buyer.A_DREARY_MIDNIGHTER]
@ -1158,7 +1179,7 @@ class OccasionalBuyer(enum.Enum):
]
def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, desired_buyers = [], maximum_cost = cp_model.INT32_MAX, maximum_exhaustion = cp_model.INT32_MAX, time_limit = float('inf'), workers = os.cpu_count(),stdscr = None):
def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, desired_buyers = [], maximum_cost = cp_model.INT32_MAX, maximum_exhaustion = cp_model.INT32_MAX, time_limit = float('inf'), workers = cpu_count(), stdscr = None):
model = cp_model.CpModel()
actions = {}
@ -1225,7 +1246,7 @@ def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, d
original_value = model.NewIntVar(0, cp_model.INT32_MAX, 'original value')
model.Add(original_value == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.value for action in actions.keys()]))
multiplied_value = model.NewIntVar(0, cp_model.INT32_MAX*11, "multiplied value")
multiplied_value = model.NewIntVar(0, cp_model.INT32_MAX*11, 'multiplied value')
model.Add(multiplied_value == original_value*11).OnlyEnforceIf(actions[zoological_mania])
model.Add(multiplied_value == original_value*10).OnlyEnforceIf(actions[zoological_mania].Not())
@ -1236,7 +1257,7 @@ def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, d
# Torso Style calculation
torso_style = model.NewIntVarFromDomain(cp_model.Domain.FromValues([torso.value.torso_style for torso in Torso]), 'torso_style')
torso_style = model.NewIntVarFromDomain(cp_model.Domain.FromValues([torso.value.torso_style for torso in Torso]), 'torso style')
for torso, torso_variable in {key: value for (key, value) in actions.items() if isinstance(key, Torso)}.items():
model.Add(torso_style == torso.value.torso_style).OnlyEnforceIf(torso_variable)
@ -2055,14 +2076,16 @@ def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, d
model.Maximize(profit_margin)
# Prints the steps that comprise a skeleton, as well as relevant attributes.
class SkeletonPrinter(cp_model.CpSolverSolutionCallback):
"""A class that prints the steps that comprise a skeleton as well as relevant attributes."""
def __init__(self):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
# Prints the latest solution of a provided solver.
def PrintableSolution(self, solver = None):
"""Print the latest solution of a provided solver."""
output = ""
# Allows use as a callback
@ -2125,11 +2148,11 @@ def Solve(bone_market_fluctuations, zoological_mania, occasional_buyer = None, d
status = solver.StatusName()
if status == "INFEASIBLE":
if status == 'INFEASIBLE':
raise RuntimeError("There is no satisfactory skeleton.")
elif status == "FEASIBLE":
elif status == 'FEASIBLE':
print("WARNING: skeleton may be suboptimal.")
elif status != "OPTIMAL":
elif status != 'OPTIMAL':
raise RuntimeError("Unknown status returned: {}.".format(status))
return printer.PrintableSolution(solver)
@ -2163,79 +2186,79 @@ class EnumAction(argparse.Action):
def main():
parser = argparse.ArgumentParser(prog='Bone Market Solver', description='Devise the optimal skeleton at the Bone Market in Fallen London.')
parser = argparse.ArgumentParser(prog='Bone Market Solver', description="Devise the optimal skeleton at the Bone Market in Fallen London.")
parser.add_argument(
'-f', '--bone-market-fluctuations',
"-f", "--bone-market-fluctuations",
action=EnumAction,
type=Fluctuation,
required=True,
help='current value of Bone Market Fluctuations, which grants various bonuses to certain buyers',
help="current value of Bone Market Fluctuations, which grants various bonuses to certain buyers",
dest='bone_market_fluctuations'
)
parser.add_argument(
'-m', '--zoological-mania',
"-m", "--zoological-mania",
action=EnumAction,
type=Declaration,
required=True,
help='current value of Zoological Mania, which grants a 10%% bonus to value for a certain declaration',
help="current value of Zoological Mania, which grants a 10%% bonus to value for a certain declaration",
dest='zoological_mania'
)
buyer = parser.add_mutually_exclusive_group(required=True)
buyer.add_argument(
'-o', '--occasional-buyer',
"-o", "--occasional-buyer",
action=EnumAction,
type=OccasionalBuyer,
help='current value of Occasional Buyer, which allows access to a buyer that is not otherwise available',
help="current value of Occasional Buyer, which allows access to a buyer that is not otherwise available",
dest='occasional_buyer'
)
buyer.add_argument(
'-b','--buyer', '--desired-buyer',
"-b", "--buyer", "--desired-buyer",
action=EnumAction,
nargs='+',
default=[],
type=Buyer,
help='specific buyer that skeleton should be designed for (if declared repeatedly, will choose from among those provided)',
help="specific buyer that skeleton should be designed for (if declared repeatedly, will choose from among those provided)",
dest='desired_buyers'
)
parser.add_argument(
'-c', '--cost', '--maximum-cost',
"-c", "--cost", "--maximum-cost",
default=cp_model.INT32_MAX,
type=int,
help='maximum number of pennies that should be invested in skeleton',
help="maximum number of pennies that should be invested in skeleton",
dest='maximum_cost'
)
parser.add_argument(
'-e', '--exhaustion', '--maximum_exhaustion',
"-e", "--exhaustion", "--maximum_exhaustion",
default=cp_model.INT32_MAX,
type=int,
help='maximum exhaustion that skeleton should generate',
help="maximum exhaustion that skeleton should generate",
dest='maximum_exhaustion'
)
parser.add_argument(
'-v', '--verbose',
"-v", "--verbose",
nargs='?',
const='True',
const=True,
default=False,
type=bool,
help='whether the solver should output search progress rather than showing intermediate solutions',
help="whether the solver should output search progress rather than showing intermediate solutions",
dest='verbose'
)
parser.add_argument(
'-t', '--time-limit',
"-t", "--time-limit",
default=float('inf'),
type=float,
help='maximum number of seconds that solver runs for',
help="maximum number of seconds that solver runs for",
dest='time_limit'
)
parser.add_argument(
'-w', '--workers',
default=os.cpu_count(),
"-w", "--workers",
default=cpu_count(),
type=int,
help='number of search worker threads to run in parallel',
help="number of search worker threads to run in parallel (default: one worker per available CPU thread)",
dest='workers'
)
@ -2252,4 +2275,5 @@ def main():
print(Solve(*arguments))
main()
if __name__ == '__main__':
main()