__author__ = "Jeremy Saklad" from functools import reduce from ortools.sat.python import cp_model class BoneMarketModel(cp_model.CpModel): """A CpModel with additional functions for common constraints and enhanced enforcement literal support.""" __slots__ = () def AddAllowedAssignments(self, variables, tuples_list): intermediate_variables, constraints = zip(*(self.NewIntermediateIntVar(variable, f'{repr((variables, tuples_list))}: {variable}') for variable in variables)) super().AddAllowedAssignments(intermediate_variables, tuples_list) return constraints def AddApproximateExponentiationEquality(self, target, var, exp, upto): """Add an approximate exponentiation equality using a lookup table. Set `upto` to a value that is unlikely to come into play. Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" return self.AddAllowedAssignments((target, var), ((int(base**exp), base) for base in range(upto + 1))) def AddMultiplicationEquality(self, target, variables): """Adds `target == variables[0] * .. * variables[n]`. Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" superclass = super() def Multiply(end, stack): intermediate_variable, variable_constraint = self.NewIntermediateIntVar(stack.pop(), f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: last variable') partial_target = self.NewIntVar(f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: partial target') recursive_constraints = self.AddMultiplicationEquality(partial_target, stack) if len(stack) > 1 else (self.Add(partial_target == stack.pop()),) intermediate_target, target_constraint = self.NewIntermediateIntVar(end, f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: target') superclass.AddMultiplicationEquality(intermediate_target, (partial_target, intermediate_variable)) return (variable_constraint, *recursive_constraints, target_constraint) # Avoid mutating parameter directly return Multiply(target, variables.copy() if isinstance(variables, list) else list(variables)) def NewIntermediateBoolVar(self, name, linear_exp, domain): """Add a fully-reified implication using an intermediate Boolean variable.""" intermediate = self.NewBoolVar(name) self.AddLinearExpressionInDomain(linear_exp, domain).OnlyEnforceIf(intermediate) self.AddLinearExpressionInDomain(linear_exp, domain.Complement()).OnlyEnforceIf(intermediate.Not()) return intermediate def NewIntermediateIntVar(self, linear_exp, name, *, lb = cp_model.INT_MIN//8, ub = cp_model.INT_MAX//8): """Creates an integer variable equivalent to the given expression and returns a tuple consisting of the variable and constraint for use with enforcement literals.""" intermediate = super().NewIntVar(lb, ub, name) return (intermediate, self.Add(intermediate == linear_exp)) def NewIntVar(self, name, *, lb = cp_model.INT32_MIN, ub = cp_model.INT32_MAX): return super().NewIntVar(lb, ub, name)