__author__ = "Jeremy Saklad" from functools import cache, partialmethod, reduce, singledispatch, singledispatchmethod from ortools.sat.python import cp_model class BoneMarketModel(cp_model.CpModel): """A CpModel with additional functions for common constraints and enhanced enforcement literal support.""" __slots__ = () def AddAllowedAssignments(self, variables, tuples_list): intermediate_variables, constraints = zip(*(self.NewIntermediateIntVar(variable, f'{repr((variables, tuples_list))}: {variable}') for variable in variables)) super().AddAllowedAssignments(intermediate_variables, tuples_list) return constraints def AddApproximateExponentiationEquality(self, target, var, exp, upto): """Add an approximate exponentiation equality using a lookup table. Set `upto` to a value that is unlikely to come into play. Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" return self.AddAllowedAssignments((target, var), ((int(base**exp), base) for base in range(upto + 1))) def AddDivisionApproximateExponentiationEquality(self, target, num, denom, exp, upto): """Adds `target == (num // denom)**exp` using a lookup table. Set `upto` to a value that is unlikely to come into play. `target`, `num`, and `denom` are interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" quotient = self.NewIntVar(f'{repr(target)} == ({repr(num)} // {repr(denom)})**{repr(exp)}: quotient') intermediate_num, num_constraint = self.NewIntermediateIntVar(num, f'{repr(target)} == ({repr(num)} // {repr(denom)})**{repr(exp)}: num', lb = 0) intermediate_denom, denom_constraint = self.NewIntermediateIntVar(denom, f'{repr(target)} == ({repr(num)} // {repr(denom)})**{repr(exp)}: denom', lb = 1) intermediate_target, target_constraint = self.NewIntermediateIntVar(target, f'{repr(target)} == ({repr(num)} // {repr(denom)})**{repr(exp)}: target') super().AddDivisionEquality(quotient, intermediate_num, intermediate_denom) super().AddAllowedAssignments((intermediate_target, quotient), ((int(base**exp), base) for base in range(upto + 1))) return (num_constraint, denom_constraint, target_constraint) def AddDivisionEquality(self, target, num, denom): """Adds `target == num // denom` (integer division rounded towards 0). Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" intermediate_target, target_constraint = self.NewIntermediateIntVar(target, f'{repr(target)} == {repr(num)} // {repr(denom)}: target') intermediate_num, num_constraint = self.NewIntermediateIntVar(num, f'{repr(target)} == {repr(num)} // {repr(denom)}: num', lb = 0) intermediate_denom, denom_constraint = self.NewIntermediateIntVar(denom, f'{repr(target)} == {repr(num)} // {repr(denom)}: denom', lb = 1) super().AddDivisionEquality(intermediate_target, intermediate_num, intermediate_denom) return (target_constraint, num_constraint, denom_constraint) def AddDivisionMultiplicationEquality(self, target, num, denom, multiple = None): """Adds `target == (num // denom) * multiple`. Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal. `multiple` defaults to the same value as `denom` if unspecified.""" quotient = self.NewIntVar(f'{repr(target)} == ({repr(num)} // {repr(denom)}) * {repr(multiple)}: quotient') intermediate_num, num_constraint = self.NewIntermediateIntVar(num, f'{repr(target)} == ({repr(num)} // {repr(denom)}) * {repr(multiple)}: num', lb = 0) intermediate_denom, denom_constraint = self.NewIntermediateIntVar(denom, f'{repr(target)} == ({repr(num)} // {repr(denom)}) * {repr(multiple)}: denom', lb = 1) intermediate_target, target_constraint = self.NewIntermediateIntVar(target, f'{repr(target)} == ({repr(num)} // {repr(denom)}) * {repr(multiple)}: target') if multiple: intermediate_multiple, multiple_constraint = self.NewIntermediateIntVar(multiple, f'{repr(target)} == ({repr(num)} // {repr(denom)}) * {repr(multiple)}: multiple') super().AddDivisionEquality(quotient, intermediate_num, intermediate_denom) super().AddMultiplicationEquality(intermediate_target, (quotient, intermediate_multiple if multiple else intermediate_denom)) return (num_constraint, denom_constraint, target_constraint, *((multiple_constraint,) if multiple else ())) def AddIf(self, variable, *constraints): """Add constraints to the model, only enforced if the specified variable is true. Each item in `constraints` must be either a BoundedLinearExpression, a Constraint compatible with OnlyEnforceIf, a 0-arity partial method of CpModel returning a valid item, or an iterable containing valid items.""" @singledispatch def Add(constraint): if constraint_iterator := iter(constraint): return frozenset((Add(element) for element in constraint_iterator)) else: raise TypeError(f"Invalid constraint: {repr(constraint)}") @Add.register def _(constraint: cp_model.Constraint): return constraint.OnlyEnforceIf(variable) @Add.register def _(constraint: cp_model.BoundedLinearExpression): return Add(self.Add(constraint)) @Add.register def _(constraint: partialmethod): return Add(constraint.__get__(self)()) return frozenset((Add(constraint) for constraint in constraints)) def AddMultiplicationEquality(self, target, variables): """Adds `target == variables[0] * .. * variables[n]`. Each parameter is interpreted as a BoundedLinearExpression, and a layer of indirection is applied such that each Constraint in the returned tuple can accept an enforcement literal.""" superclass = super() def Multiply(end, stack): intermediate_variable, variable_constraint = self.NewIntermediateIntVar(stack.pop(), f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: last variable') partial_target = self.NewIntVar(f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: partial target') recursive_constraints = self.AddMultiplicationEquality(partial_target, stack) if len(stack) > 1 else (self.Add(partial_target == stack.pop()),) intermediate_target, target_constraint = self.NewIntermediateIntVar(end, f'{repr(end)} == {"*".join((repr(variable) for variable in stack))}: target') superclass.AddMultiplicationEquality(intermediate_target, (partial_target, intermediate_variable)) return (variable_constraint, *recursive_constraints, target_constraint) # Avoid mutating parameter directly return Multiply(target, variables.copy() if isinstance(variables, list) else list(variables)) @cache def BoolExpression(self, bounded_linear_exp): """Add a fully-reified implication using an intermediate Boolean variable.""" intermediate = self.NewBoolVar(str(bounded_linear_exp)) linear_exp = bounded_linear_exp.Expression() domain = cp_model.Domain(*bounded_linear_exp.Bounds()) self.AddLinearExpressionInDomain(linear_exp, domain).OnlyEnforceIf(intermediate) self.AddLinearExpressionInDomain(linear_exp, domain.Complement()).OnlyEnforceIf(intermediate.Not()) return intermediate @singledispatchmethod def NewIntermediateIntVar(self, expression: cp_model.LinearExpr, name, *, lb = cp_model.INT32_MIN, ub = cp_model.INT32_MAX): """Creates an integer variable equivalent to the given expression and returns a tuple consisting of the variable and constraint for use with enforcement literals. `equality` must be either a LinearExp or a unary partialmethod that accepts a target integer variable and returns Constraints.""" intermediate = super().NewIntVar(lb, ub, name) return (intermediate, self.Add(intermediate == expression)) @NewIntermediateIntVar.register def _(self, expression: partialmethod, name, *, lb = cp_model.INT32_MIN, ub = cp_model.INT32_MAX): intermediate = super().NewIntVar(lb, ub, name) return (intermediate, expression.__get__(self)(intermediate)) def NewIntVar(self, name, *, lb = cp_model.INT32_MIN, ub = cp_model.INT32_MAX): return super().NewIntVar(lb, ub, name)