Bone-Market-Solver/Bone Market Solver.py

2504 lines
106 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Use constraint programming to devise the optimal skeleton at the Bone Market in Fallen London."""
__all__ = ['Declaration', 'DiplomatFascination', 'Fluctuation', 'OccasionalBuyer', 'Solve']
__author__ = "Jeremy Saklad"
import argparse
import curses
from enum import Enum
from functools import reduce
from os import cpu_count
from ortools.sat.python import cp_model
# This multiplier is applied to the profit margin to avoid losing precision due to rounding.
PROFIT_MARGIN_MULTIPLIER = 10000000
# This is the highest number of attribute to calculate fractional exponents for.
MAXIMUM_ATTRIBUTE = 100
# This is a constant used to calculate difficulty checks. You almost certainly do not need to change this.
DIFFICULTY_SCALER = 0.6
class Cost(Enum):
"""The number of pennies needed to produce a quality."""
# This is your baseline EPA: the pennies you could generate using an action for a generic grind.
ACTION = 400
# Antique Mystery
ANTIQUE_MYSTERY = 1250
# Favours: Bohemians
# Various opportunity cards
BOHEMIAN_FAVOURS = ACTION
# Bone Fragment
BONE_FRAGMENT = 1
# Cartographer's Hoard
CARTOGRAPHERS_HOARD = 31250
# Favours: The Church
# Various opportunity cards
CHURCH_FAVOURS = ACTION
# Collection Note: There's a 'Package' in London
# Station VIII Lab
COLLECTION_NOTE = ACTION
# Volume of Collated Research
COLLATED_RESEARCH = 250
# Deep-Zee Catch
# Spear-fishing at the bottom of the Evenlode, 7 at a time
DEEP_ZEE_CATCH = ACTION/7
# Crustacean Pincer
# Ealing Gardens Butcher, 2 at a time
CRUSTACEAN_PINCER = (ACTION + DEEP_ZEE_CATCH)/2
# Femur of a Surface Deer
# Dumbwaiter of Balmoral, 25 at a time
DEER_FEMUR = ACTION/25
# Favours: The Docks
# Various opportunity cards
DOCK_FAVOURS = ACTION
# Extraordinary Implication
EXTRAORDINARY_IMPLICATION = 250
# Eyeless Skull
# No consistent source
EYELESS_SKULL = cp_model.INT32_MAX/2
# Holy Relic of the Thigh of Saint Fiacre
# Jericho Locks statue, 2 at a time
FIACRE_THIGH = (ACTION + 4*CHURCH_FAVOURS)/2
# Fin Bones, Collected
# Hunt and dissect Pinewood Shark, 40 at a time
FIN_BONES = (11*ACTION)/40
# Amber-Crusted Fin
# Helicon House
AMBER_FIN = ACTION + 10*FIN_BONES
# Five-Pointed Ribcage
# Upwards
FIVE_POINTED_RIBCAGE = 9*ACTION + CARTOGRAPHERS_HOARD
# Esteem of the Guild
# Jericho Parade, 2 at a time
GUILD_ESTEEM = (ACTION + 5*DOCK_FAVOURS)/2
# Skull in Coral
# Persephone, 1-2 at a time
CORAL_SKULL = 1.5*(2*ACTION + 3*GUILD_ESTEEM)
# Headless Skeleton
# These are accumulated while acquiring other qualities.
HEADLESS_SKELETON = 0
# Hinterland Scrip
HINTERLAND_SCRIP = 50
# Fossilised Forelimb
# Anning and Daughters
FOSSILISED_FORELIMB = 55*HINTERLAND_SCRIP
# Hedonist
# Handsome Townhouse, 3cp at a time
HEDONIST_CP = ACTION/3
# Human Arm
# These are accumulated while acquiring other qualities.
HUMAN_ARM = 0
# Incisive Observation
INCISIVE_OBSERVATION = 50
# Crate of Incorruptible Biscuits
INCORRUPTIBLE_BISCUITS = 250
# Inkling of Identity
INKLING_OF_IDENTITY = 10
# A Custom-Engraved Skull
# Feast of the Exceptional Rose, sent by one player and accepted by another
ENGRAVED_SKULL = 2*ACTION + 200*INKLING_OF_IDENTITY
# Ivory Humerus
# Ealing Gardens statue, 2 at a time
IVORY_HUMERUS = (ACTION + 4*BOHEMIAN_FAVOURS)/2
# Jade Fragment
JADE_FRAGMENT = 1
# Femur of a Jurassic Beast
# Brawling for yourself, large Bone Market crate, 12 at a time
JURASSIC_FEMUR = (10*ACTION)/12
# Knotted Humerus
# These are accumulated while acquiring other qualities.
KNOTTED_HUMERUS = 0
# Nevercold Brass Sliver
NEVERCOLD_BRASS = 1
# Obsidian Chitin Tail
# No consistent source
OBSIDIAN_TAIL = cp_model.INT32_MAX/2
# Parabolan Orange-apple
# Parabolan Base-camp, electricity and hedonism, 2 at a time
ORANGE_APPLE = (2*ACTION + 100*BONE_FRAGMENT + 21*HEDONIST_CP)/2
# Ivory Femur
# Bohemian Sculptress
IVORY_FEMUR = ACTION + 750*BONE_FRAGMENT + 3*ORANGE_APPLE
# Penny
PENNY = 1
# Bright Brass Skull
# Merrigans Exchange
BRASS_SKULL = 6250*PENNY
# Pentagrammic Skull
# Upwards
PENTAGRAMMIC_SKULL = 9*ACTION
# Hand-picked Peppercaps
PEPPERCAPS = HINTERLAND_SCRIP
# Revisionist Historical Narrative
# Waswood
REVISIONIST_NARRATIVE = ACTION + 4*EXTRAORDINARY_IMPLICATION + INCISIVE_OBSERVATION
# Knob of Scintillack
SCINTILLACK = 250
# Searing Enigma
SEARING_ENIGMA = 6250
# Carved Ball of Stygian Ivory
STYGIAN_IVORY = 250
# Preserved Surface Blooms
SURFACE_BLOOMS = 250
# Consignment of Scintillack Snuff
# Laboratory Manufacturing
SCINTILLACK_SNUFF = (ACTION + 8*SCINTILLACK + SURFACE_BLOOMS)/2
# Elation at Feline Oration
# Pinnock
ELATION_AT_FELINE_ORATION = ACTION + 2*ANTIQUE_MYSTERY + COLLECTION_NOTE + 2*SCINTILLACK_SNUFF
# Oil of Companionship
# Station VIII Lab
OIL_OF_COMPANIONSHIP = ACTION + ELATION_AT_FELINE_ORATION
# Survey of the Neath's Bones
# Laboratory Research
SURVEY = 6*ACTION/25
# Plaster Tail Bones
# Carpenter's Granddaughter, 2 at a time
PLASTER_TAIL_BONES = (ACTION + 10*SURVEY)/2
# Human Ribcage
# Ealing Gardens
HUMAN_RIBCAGE = ACTION + 15*SURVEY
# Palaeontological Discovery
# Plain of Thirsty Grasses
PALAEONTOLOGICAL_DISCOVERY = (ACTION + 140*SURVEY)/6
# Helical Thighbone
# Results of Excavation, 6 at a time
HELICAL_THIGH = (2*PALAEONTOLOGICAL_DISCOVERY)/6
# Leviathan Frame
# Results of Excavation
LEVIATHAN_FRAME = 25*PALAEONTOLOGICAL_DISCOVERY
# Thorned Ribcage
# Iron-Toothed Terror Bird
THORNED_RIBCAGE = 6*ACTION
# Flourishing Ribcage
# Helicon House
FLOURISHING_RIBCAGE = ACTION + HUMAN_RIBCAGE + THORNED_RIBCAGE
# Time Remaining in the Woods
# Compel Ghillie, 7 at a time
TIME_REMAINING_IN_THE_WOODS = (ACTION + 4*COLLATED_RESEARCH)/7
# Observation: Red Deer
# Balmoral Woods
DEER_OBSERVATION = 13*ACTION + 12*TIME_REMAINING_IN_THE_WOODS
# Mammoth Ribcage
# Keeper of the Marigold Menagerie
MAMMOTH_RIBCAGE = ACTION + DEER_OBSERVATION
# Observation: Fox
# Balmoral Woods
FOX_OBSERVATION = 10*ACTION + 8*TIME_REMAINING_IN_THE_WOODS
# Doubled Skull
# Keeper of the Marigold Menagerie
DOUBLED_SKULL = ACTION + FOX_OBSERVATION
# Observation: Grouse
# Balmoral Woods
GROUSE_OBSERVATION = 9*ACTION + 8*TIME_REMAINING_IN_THE_WOODS
# Skeleton with Seven Necks
# Keeper of the Marigold Menagerie
SKELETON_WITH_SEVEN_NECKS = ACTION + GROUSE_OBSERVATION
# Nodule of Trembling Amber
TREMBLING_AMBER = 1250
# Ribcage with a Bouquet of Eight Spines
# Helicon House
RIBCAGE_WITH_EIGHT_SPINES = ACTION + 3*SEARING_ENIGMA + SKELETON_WITH_SEVEN_NECKS + THORNED_RIBCAGE + 3*TREMBLING_AMBER
# Rubbery Skull
# Flute Street, including travel due to quality cap
RUBBERY_SKULL = 25*ACTION
# Rumour of the Upper River
RUMOUR_OF_THE_UPPER_RIVER = 250
# Jet Black Stinger
# Hunting with Sophia's, 5 at a time
BLACK_STINGER = (ACTION + 5*RUMOUR_OF_THE_UPPER_RIVER)/5
# Prismatic Frame
# Expedition at Station VIII
PRISMATIC_FRAME = ACTION + OIL_OF_COMPANIONSHIP + 98*RUMOUR_OF_THE_UPPER_RIVER
# Unidentified Thigh Bone
# These are accumulated while acquiring other qualities.
UNIDENTIFIED_THIGH = 0
# Nodule of Warm Amber
WARM_AMBER = 10
# Albatross Wing
# Ealing Gardens Butcher, 2 at a time
ALBATROSS_WING = (ACTION + 2000*BONE_FRAGMENT + 25*WARM_AMBER)/2
# Bat Wing
# Ealing Gardens Butcher, 2 at a time
BAT_WING = (ACTION + 100*BONE_FRAGMENT + 2*WARM_AMBER)/2
# Horned Skull
# Ealing Gardens Butcher
HORNED_SKULL = ACTION + 1000*BONE_FRAGMENT + 5*WARM_AMBER
# Plated Skull
# Ealing Gardens Butcher
PLATED_SKULL = ACTION + 1750*BONE_FRAGMENT + INCORRUPTIBLE_BISCUITS + 25*WARM_AMBER
# Sabre-toothed Skull
# Ealing Gardens Butcher
SABRE_TOOTHED_SKULL = ACTION + 4900*BONE_FRAGMENT + 125*WARM_AMBER
# Wing of a Young Terror Bird
# Ealing Gardens Butcher, 2 at a time
TERROR_BIRD_WING = (ACTION + 100*BONE_FRAGMENT + 25*WARM_AMBER)/2
# Tomb-Lion's Tail
# Ealing Gardens Butcher
TOMB_LION_TAIL = ACTION + 200*BONE_FRAGMENT + 2*WARM_AMBER
# Warbler Skeleton
# Ealing Gardens Butcher
WARBLER_SKELETON = ACTION + 130*BONE_FRAGMENT + 2*WARM_AMBER
# Withered Tentacle
# Helicon House, 3 at a time
WITHERED_TENTACLE = (ACTION + 5*WARM_AMBER)/3
def NewIntermediateBoolVar(self, name, expression, domain):
"""Add a fully-reified implication using an intermediate Boolean variable."""
intermediate = self.NewBoolVar(name)
self.AddLinearExpressionInDomain(expression, domain).OnlyEnforceIf(intermediate)
self.AddLinearExpressionInDomain(expression, domain.Complement()).OnlyEnforceIf(intermediate.Not())
return intermediate
cp_model.CpModel.NewIntermediateBoolVar = NewIntermediateBoolVar
del NewIntermediateBoolVar
def AddApproximateExponentiationEquality(self, target, var, exp, upto):
"""Add an approximate exponentiation equality using a lookup table.
Set `upto` to a value that is unlikely to come into play.
"""
return self.AddAllowedAssignments([target, var], [(int(base**exp), base) for base in range(upto + 1)])
cp_model.CpModel.AddApproximateExponentiationEquality = AddApproximateExponentiationEquality
del AddApproximateExponentiationEquality
def AddGeneralMultiplicationEquality(self, target, *variables):
"""Add a multiplication equality for any number of terms using intermediate variables."""
# This is used for producing unique names for intermediate variables.
term_index = 1
def function(a, b):
nonlocal term_index
intermediate = self.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{} term {}'.format(target.Name(), term_index))
term_index += 1
self.AddMultiplicationEquality(intermediate, [a, b])
return intermediate
product = reduce(function, variables)
return self.Add(target == product)
cp_model.CpModel.AddGeneralMultiplicationEquality = AddGeneralMultiplicationEquality
del AddGeneralMultiplicationEquality
class Action:
"""An action that affects a skeleton's qualities."""
def __init__(self, name, cost, torso_style = None, value = 0, skulls_needed = 0, limbs_needed = 0, tails_needed = 0, skulls = 0, arms = 0, legs = 0, tails = 0, wings = 0, fins = 0, tentacles = 0, amalgamy = 0, antiquity = 0, menace = 0, implausibility = 0, counter_church = 0, exhaustion = 0):
self.name = name
# Cost in pennies of using this action, including the value of the actions spent
self.cost = cost
# Skeleton: Torso Style
self.torso_style = torso_style
# Approximate Value of Your Skeleton in Pennies
self.value = value
# Skeleton: Skulls Needed
self.skulls_needed = skulls_needed
# Skeleton: Limbs Needed
self.limbs_needed = limbs_needed
# Skeleton: Tails Needed
self.tails_needed = tails_needed
# Skeleton: Skulls
self.skulls = skulls
# Skeleton: Arms
self.arms = arms
# Skeleton: Legs
self.legs = legs
# Skeleton: Tails
self.tails = tails
# Skeleton: Wings
self.wings = wings
# Skeleton: Fins
self.fins = fins
# Skeleton: Tentacles
self.tentacles = tentacles
# Skeleton: Amalgamy
self.amalgamy = amalgamy
# Skeleton: Antiquity
self.antiquity = antiquity
# Skeleton: Menace
self.menace = menace
# Skeleton: Self-Evident Implausibility
self.implausibility = implausibility
# Skeleton: Support for a Counter-church Theology
self.counter_church = counter_church
# Bone Market Exhaustion
self.exhaustion = exhaustion
def __str__(self):
return str(self.name)
class Torso(Enum):
"""An action that initiates a skeleton."""
HEADLESS_HUMANOID = Action(
"Reassemble your Headless Humanoid",
cost = Cost.ACTION.value + Cost.HEADLESS_SKELETON.value,
torso_style = 10,
value = 250,
skulls_needed = 1,
arms = 2,
legs = 2
)
# Licentiate
# VICTIM_SKELETON = Action(
# "Supply a skeleton of your own",
# cost = Cost.ACTION.value,
# torso_style = 10,
# value = 250,
# skulls_needed = 1,
# arms = 2,
# legs = 2
# )
HUMAN_RIBCAGE = Action(
"Build on the Human Ribcage",
cost = Cost.ACTION.value + Cost.HUMAN_RIBCAGE.value,
torso_style = 15,
value = 1250,
skulls_needed = 1,
limbs_needed = 4
)
THORNED_RIBCAGE = Action(
"Make something of your Thorned Ribcage",
cost = Cost.ACTION.value + Cost.THORNED_RIBCAGE.value,
torso_style = 20,
value = 1250,
skulls_needed = 1,
limbs_needed = 4,
tails_needed = 1,
amalgamy = 1,
menace = 1
)
SKELETON_WITH_SEVEN_NECKS = Action(
"Build on the Skeleton with Seven Necks",
cost = Cost.ACTION.value + Cost.SKELETON_WITH_SEVEN_NECKS.value,
torso_style = 30,
value = 6250,
skulls_needed = 7,
limbs_needed = 2,
legs = 2,
amalgamy = 2,
menace = 1
)
FLOURISHING_RIBCAGE = Action(
"Build on the Flourishing Ribcage",
cost = Cost.ACTION.value + Cost.FLOURISHING_RIBCAGE.value,
torso_style = 40,
value = 1250,
skulls_needed = 2,
limbs_needed = 6,
tails_needed = 1,
amalgamy = 2
)
MAMMOTH_RIBCAGE = Action(
"Build on the Mammoth Ribcage",
cost = Cost.ACTION.value + Cost.MAMMOTH_RIBCAGE.value,
torso_style = 50,
value = 6250,
skulls_needed = 1,
limbs_needed = 4,
tails_needed = 1,
antiquity = 2
)
RIBCAGE_WITH_A_BOUQUET_OF_EIGHT_SPINES = Action(
"Build on the Ribcage with the Eight Spines",
cost = Cost.ACTION.value + Cost.RIBCAGE_WITH_EIGHT_SPINES.value,
torso_style = 60,
value = 31250,
skulls_needed = 8,
limbs_needed = 4,
tails_needed = 1,
amalgamy = 1,
menace = 2
)
LEVIATHAN_FRAME = Action(
"Build on the Leviathan Frame",
cost = Cost.ACTION.value + Cost.LEVIATHAN_FRAME.value,
torso_style = 70,
value = 31250,
skulls_needed = 1,
limbs_needed = 2,
tails = 1,
antiquity = 1,
menace = 1
)
PRISMATIC_FRAME = Action(
"Build on the Prismatic Frame",
cost = Cost.ACTION.value + Cost.PRISMATIC_FRAME.value,
torso_style = 80,
value = 31250,
skulls_needed = 3,
limbs_needed = 3,
tails_needed = 3,
amalgamy = 2,
antiquity = 2
)
FIVE_POINTED_FRAME = Action(
"Build on the Five-Pointed Frame",
cost = Cost.ACTION.value + Cost.FIVE_POINTED_RIBCAGE.value,
torso_style = 100,
value = 31250,
skulls_needed = 5,
limbs_needed = 5,
amalgamy = 2,
menace = 1
)
def __str__(self):
return str(self.value)
class Skull(Enum):
"""An action that is taken immediately after starting a skeleton."""
BAPTIST_SKULL = Action(
"Duplicate the skull of John the Baptist, if you can call that a skull",
cost = Cost.ACTION.value + 500*Cost.BONE_FRAGMENT.value + 10*Cost.PEPPERCAPS.value,
value = 1250,
skulls_needed = -1,
skulls = 1,
counter_church = 1
)
BRASS_SKULL = Action(
"Affix a Bright Brass Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.BRASS_SKULL.value + 200*Cost.NEVERCOLD_BRASS.value,
value = 6500,
skulls_needed = -1,
skulls = 1,
implausibility = 2
)
CORAL_SKULL = Action(
"Affix a Skull in Coral to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.CORAL_SKULL.value + Cost.SCINTILLACK.value,
value = 1750,
skulls_needed = -1,
skulls = 1,
amalgamy = 2
)
DOUBLED_SKULL = Action(
"Affix a Doubled Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.DOUBLED_SKULL.value,
value = 6250,
skulls_needed = -1,
skulls = 2,
amalgamy = 1,
antiquity = 2
)
# Adds Exhaustion
# ENGRAVED_SKULL = Action(
# "Affix a Custom-Engraved Skull to your (Skeleton Type)",
# cost = Cost.ACTION.value + Cost.ENGRAVED_SKULL.value,
# value = 10000,
# skulls_needed = -1,
# skulls = 1,
# exhaustion = 2
# )
EYELESS_SKULL = Action(
"Affix an Eyeless Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.EYELESS_SKULL.value,
value = 3000,
skulls_needed = -1,
skulls = 1,
menace = 2
)
HORNED_SKULL = Action(
"Affix a Horned Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.HORNED_SKULL.value,
value = 1250,
skulls_needed = -1,
skulls = 1,
antiquity = 1,
menace = 2
)
# Seeking the Name of Mr. Eaten
# OWN_SKULL = Action(
# "Duplicate your own skull and affix it here",
# cost = Cost.ACTION.value + 1000*Cost.BONE_FRAGMENT.value,
# value = -250,
# skulls_needed = -1,
# skulls = 1
# )
PENTAGRAMMIC_SKULL = Action(
"Affix a Pentagrammic Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.PENTAGRAMMIC_SKULL.value,
value = 1250,
skulls_needed = -1,
skulls = 1,
amalgamy = 2,
menace = 1
)
PLATED_SKULL = Action(
"Affix a Plated Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.PLATED_SKULL.value,
value = 2500,
skulls_needed = -1,
skulls = 1,
menace = 2
)
RUBBERY_SKULL = Action(
"Affix a Rubbery Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.RUBBERY_SKULL.value,
value = 600,
skulls_needed = -1,
skulls = 1,
amalgamy = 1
)
SABRE_TOOTHED_SKULL = Action(
"Affix a Sabre-toothed Skull to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.SABRE_TOOTHED_SKULL.value,
value = 6250,
skulls_needed = -1,
skulls = 1,
antiquity = 1,
menace = 1
)
STYGIAN_IVORY = Action(
"Use a Carved Ball of Stygian Ivory to cap off your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.STYGIAN_IVORY.value,
value = 250,
skulls_needed = -1
)
VAKE_SKULL = Action(
"Duplicate the Vake's skull and use it to decorate your (Skeleton Type)",
cost = Cost.ACTION.value + 6000*Cost.BONE_FRAGMENT.value,
value = 6500,
skulls_needed = -1,
skulls = 1,
menace = 3
)
# Licentiate
# VICTIM_SKULL = Action(
# "Cap this with a victims skull",
# cost = Cost.ACTION.value,
# value = 250,
# skulls_needed = -1,
# skulls = 1
# )
def __str__(self):
return str(self.value)
class Appendage(Enum):
"""An action that is taken once all skulls are added to a skeleton."""
# Cost from this scales with limbs and is partially implemented separately
ADD_JOINTS = Action(
"Add four more joints to your skeleton",
cost = Cost.ACTION.value + Cost.TREMBLING_AMBER.value,
limbs_needed = 4,
amalgamy = 2
)
ALBATROSS_WING = Action(
"Put an Albatross Wing on your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.ALBATROSS_WING.value,
value = 1250,
limbs_needed = -1,
wings = 1,
amalgamy = 1
)
AMBER_FIN = Action(
"Attach the Amber-Crusted Fin to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.AMBER_FIN.value,
value = 1500,
limbs_needed = -1,
fins = 1,
amalgamy = 1,
menace = 1
)
BAT_WING = Action(
"Add a Bat Wing to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.BAT_WING.value,
value = 1,
limbs_needed = -1,
wings = 1,
menace = -1
)
BLACK_STINGER = Action(
"Apply a Jet Black Stinger to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.BLACK_STINGER.value,
value = 50,
tails_needed = -1,
tails = 1,
menace = 2
)
CRUSTACEAN_PINCER = Action(
"Apply a Crustacean Pincer to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.CRUSTACEAN_PINCER.value,
limbs_needed = -1,
arms = 1,
menace = 1
)
DEER_FEMUR = Action(
"Apply the Femur of a Surface Deer to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.DEER_FEMUR.value,
value = 10,
limbs_needed = -1,
legs = 1,
menace = -1
)
# Counter-Church theology from this scales with torso style and is implemented separately
FIACRE_THIGH = Action(
"Affix Saint Fiacre's Thigh Relic to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.FIACRE_THIGH.value,
value = 1250,
limbs_needed = -1,
legs = 1
)
FIN_BONES = Action(
"Put Fins on your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.FIN_BONES.value,
value = 50,
limbs_needed = -1,
fins = 1
)
FOSSILISED_FORELIMB = Action(
"Apply a Fossilised Forelimb to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.FOSSILISED_FORELIMB.value,
value = 2750,
limbs_needed = -1,
arms = 1,
antiquity = 2
)
HELICAL_THIGH = Action(
"Affix the Helical Thighbone to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.HELICAL_THIGH.value,
value = 300,
limbs_needed = -1,
legs = 1,
amalgamy = 2
)
HUMAN_ARM = Action(
"Join a Human Arm to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.HUMAN_ARM.value,
value = 250,
limbs_needed = -1,
arms = 1,
menace = -1
)
IVORY_FEMUR = Action(
"Apply an Ivory Femur to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.IVORY_FEMUR.value,
value = 6500,
limbs_needed = -1,
legs = 1
)
IVORY_HUMERUS = Action(
"Apply an Ivory Humerus to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.IVORY_HUMERUS.value,
value = 1500,
limbs_needed = -1,
arms = 1
)
JURASSIC_THIGH = Action(
"Apply a Jurassic Thigh Bone to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.JURASSIC_FEMUR.value,
value = 300,
limbs_needed = -1,
legs = 1,
antiquity = 1
)
KNOTTED_HUMERUS = Action(
"Apply a Knotted Humerus to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.KNOTTED_HUMERUS.value,
value = 300,
limbs_needed = -1,
arms = 1,
amalgamy = 1
)
OBSIDIAN_TAIL = Action(
"Apply an Obsidian Chitin Tail to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.OBSIDIAN_TAIL.value,
value = 500,
tails_needed = -1,
tails = 1,
amalgamy = 1
)
PLASTER_TAIL_BONES = Action(
"Apply Plaster Tail Bones to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.PLASTER_TAIL_BONES.value,
value = 250,
tails_needed = -1,
tails = 1,
implausibility = 1
)
TERROR_BIRD_WING = Action(
"Add the Wing of a Young Terror Bird to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.TERROR_BIRD_WING.value,
value = 250,
limbs_needed = -1,
wings = 1,
antiquity = 1,
menace = 1
)
TOMB_LION_TAIL = Action(
"Apply a Tomb-Lion's Tail to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.TOMB_LION_TAIL.value,
value = 250,
tails_needed = -1,
tails = 1,
antiquity = 1
)
UNIDENTIFIED_THIGH = Action(
"Apply an Unidentified Thigh Bone to your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.UNIDENTIFIED_THIGH.value,
value = 100,
limbs_needed = -1,
legs = 1
)
WITHERED_TAIL = Action(
"Apply a Withered Tentacle as a tail on your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.WITHERED_TENTACLE.value,
value = 250,
tails_needed = -1,
tails = 1,
antiquity = -1
)
WITHERED_TENTACLE = Action(
"Put a Withered Tentacle on your (Skeleton Type)",
cost = Cost.ACTION.value + Cost.WITHERED_TENTACLE.value,
value = 250,
limbs_needed = -1,
tentacles = 1,
antiquity = -1
)
REMOVE_TAIL = Action(
"Remove the tail from your (Skeleton Type)",
cost = Cost.ACTION.value,
tails = -1
)
# This sets Skeleton: Tails Needed to 0 and is implemented separately
SKIP_TAILS = Action(
"Decide your Tailless Animal needs no tail",
cost = Cost.ACTION.value
)
def __str__(self):
return str(self.value)
class Adjustment(Enum):
"""An action that is taken after all parts have been added to a skeleton."""
CARVE_AWAY_AGE = Action(
"Carve away some evidence of age",
cost = Cost.ACTION.value,
antiquity = -2
)
DISGUISE_AMALGAMY = Action(
"Disguise the amalgamy of this piece",
cost = Cost.ACTION.value + 25*Cost.JADE_FRAGMENT.value,
amalgamy = -2
)
MAKE_LESS_DREADFUL = Action(
"Make your skeleton less dreadful",
cost = Cost.ACTION.value,
menace = -2
)
def __str__(self):
return str(self.value)
class Declaration(Enum):
"""An action that is taken after all adjustments have been made to a skeleton."""
AMPHIBIAN = Action(
"Declare your (Skeleton Type) a completed Amphibian",
cost = Cost.ACTION.value
)
APE = Action(
"Declare your (Skeleton Type) a completed Ape",
cost = Cost.ACTION.value
)
BIRD = Action(
"Declare your (Skeleton Type) a completed Bird",
cost = Cost.ACTION.value
)
CHIMERA = Action(
"Declare your (Skeleton Type) a completed Chimera",
cost = Cost.ACTION.value,
implausibility = 3
)
CURATOR = Action(
"Declare your (Skeleton Type) a completed Curator",
cost = Cost.ACTION.value
)
FISH = Action(
"Declare your (Skeleton Type) a completed Fish",
cost = Cost.ACTION.value
)
HUMANOID = Action(
"Declare your (Skeleton Type) a completed Humanoid",
cost = Cost.ACTION.value
)
INSECT = Action(
"Declare your (Skeleton Type) a completed Insect",
cost = Cost.ACTION.value
)
MONKEY = Action(
"Declare your (Skeleton Type) a completed Monkey",
cost = Cost.ACTION.value
)
REPTILE = Action(
"Declare your (Skeleton Type) a completed Reptile",
cost = Cost.ACTION.value
)
SPIDER = Action(
"Declare your (Skeleton Type) a completed Spider",
cost = Cost.ACTION.value
)
def __str__(self):
return str(self.value)
class Embellishment(Enum):
"""An action is taken after a declaration has been made for a skeleton."""
MORE_PLAUSIBLE = Action(
"Make it seem just a bit more plausible",
cost = Cost.ACTION.value + Cost.REVISIONIST_NARRATIVE.value,
implausibility = -1
)
CONVINCING_HISTORY = Action(
"Invest great time and skill in coming up with a convincing history",
cost = Cost.ACTION.value + 3*Cost.REVISIONIST_NARRATIVE.value,
implausibility = -5
)
def __str__(self):
return str(self.value)
class Buyer(Enum):
"""An action that converts a skeleton into revenue."""
A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES = Action(
"Sell a complete skeleton to the Bone Hoarder",
cost = Cost.ACTION.value
)
A_NAIVE_COLLECTOR = Action(
"Sell your Skeleton to a Naive Collector",
cost = Cost.ACTION.value
)
A_FAMILIAR_BOHEMIAN_SCULPTRESS = Action(
"Sell your Skeleton to the Sculptress",
cost = Cost.ACTION.value
)
A_PEDAGOGICALLY_INCLINED_GRANDMOTHER = Action(
"Sell your skeleton to a Pedagogically Inclined Grandmother",
cost = Cost.ACTION.value
)
A_THEOLOGIAN_OF_THE_OLD_SCHOOL = Action(
"Sell your Skeleton to the Theologian of the Old School",
cost = Cost.ACTION.value
)
AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD = Action(
"Sell your skeleton to an Enthusiast of the Ancient World",
cost = Cost.ACTION.value
)
MRS_PLENTY = Action(
"Sell a complete skeleton to Mrs Plenty",
cost = Cost.ACTION.value
)
A_TENTACLED_SERVANT = Action(
"Sell him your amalgamous skeleton",
cost = Cost.ACTION.value
)
AN_INVESTMENT_MINDED_AMBASSADOR = Action(
"Sell your skeleton to the Ambassador",
cost = Cost.ACTION.value
)
A_TELLER_OF_TERRORS = Action(
"Sell your skeleton to the Teller of Terrors",
cost = Cost.ACTION.value
)
A_TENTACLED_ENTREPRENEUR = Action(
"Sell to the Tentacled Entrepreneur",
cost = Cost.ACTION.value
)
AN_AUTHOR_OF_GOTHIC_TALES = Action(
"Sell to an Author of Gothic Tales",
cost = Cost.ACTION.value
)
A_ZAILOR_WITH_PARTICULAR_INTERESTS = Action(
"Sell your skeleton to a Zailor",
cost = Cost.ACTION.value
)
A_RUBBERY_COLLECTOR = Action(
"Sell to an Enthusiast of a Rubbery Menace",
cost = Cost.ACTION.value
)
A_CONSTABLE = Action(
"Sell to a Constable",
cost = Cost.ACTION.value
)
AN_ENTHUSIAST_IN_SKULLS = Action(
"Sell to the Cranial Enthusiast",
cost = Cost.ACTION.value
)
A_DREARY_MIDNIGHTER = Action(
"Sell to the Dreary Midnighter",
cost = Cost.ACTION.value
)
A_COLOURFUL_PHANTASIST_BAZAARINE = Action(
"Sell an amalgamous skeleton as a work of Bazaarine art",
cost = Cost.ACTION.value
)
A_COLOURFUL_PHANTASIST_NOCTURNAL = Action(
"Sell a menacing skeleton as a work of Nocturnal art",
cost = Cost.ACTION.value
)
A_COLOURFUL_PHANTASIST_CELESTIAL = Action(
"Sell an antique skeleton as a work of Celestial art",
cost = Cost.ACTION.value
)
AN_INGENUOUS_MALACOLOGIST = Action(
"Sell him a tentacle-laden skeleton",
cost = Cost.ACTION.value
)
AN_ENTERPRISING_BOOT_SALESMAN = Action(
"Sell to the Enterprising Boot Salesman",
cost = Cost.ACTION.value
)
THE_DUMBWAITER_OF_BALMORAL = Action(
"Export the Skeleton of a Neathy Bird",
cost = Cost.ACTION.value
)
THE_CARPENTERS_GRANDDAUGHTER = Action(
"Impress her with your own constructions",
cost = Cost.ACTION.value
)
THE_TRIFLING_DIPLOMAT_ANTIQUITY = Action(
"Sell the Diplomat an antique skeleton",
cost = Cost.ACTION.value
)
THE_TRIFLING_DIPLOMAT_BIRD = Action(
"Sell the Diplomat a fossil bird",
cost = Cost.ACTION.value
)
THE_TRIFLING_DIPLOMAT_FISH = Action(
"Sell the Diplomat a fossil fish",
cost = Cost.ACTION.value
)
def __str__(self):
return str(self.value)
class Fluctuation(Enum):
"""Which skeleton attribute is currently boosted."""
ANTIQUITY = 1
AMALGAMY = 2
MENACE = 3
class OccasionalBuyer(Enum):
"""Which of several unusual buyers are available."""
AN_ENTHUSIAST_IN_SKULLS = [Buyer.AN_ENTHUSIAST_IN_SKULLS]
A_DREARY_MIDNIGHTER = [Buyer.A_DREARY_MIDNIGHTER]
A_COLOURFUL_PHANTASIST = [
Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE,
Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL,
Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL,
]
AN_INGENUOUS_MALACOLOGIST = [Buyer.AN_INGENUOUS_MALACOLOGIST]
AN_ENTERPRISING_BOOT_SALESMAN = [Buyer.AN_ENTERPRISING_BOOT_SALESMAN]
DiplomatFascination = Enum(
'DiplomatFascination',
( (diplomat.name[22:], diplomat) for diplomat in Buyer
if diplomat.name.startswith('THE_TRIFLING_DIPLOMAT_') ),
module = __name__
)
DiplomatFascination.__doc__ = "The current fascination of the Trifling Diplomat."
def Solve(shadowy_level, bone_market_fluctuations, zoological_mania, occasional_buyer = None, diplomat_fascination = None, desired_buyers = [], maximum_cost = cp_model.INT32_MAX, maximum_exhaustion = cp_model.INT32_MAX, time_limit = float('inf'), workers = cpu_count(), stdscr = None):
model = cp_model.CpModel()
actions = {}
# Torso
for torso in Torso:
actions[torso] = model.NewBoolVar(torso.value.name)
# Skull
for skull in Skull:
actions[skull] = model.NewIntVar(0, cp_model.INT32_MAX, skull.value.name)
# Appendage
for appendage in Appendage:
if appendage == Appendage.SKIP_TAILS:
actions[appendage] = model.NewBoolVar(appendage.value.name)
else:
actions[appendage] = model.NewIntVar(0, cp_model.INT32_MAX, appendage.value.name)
# Avoid adding joints at first
model.AddHint(actions[Appendage.ADD_JOINTS], 0)
# Adjustment
for adjustment in Adjustment:
actions[adjustment] = model.NewIntVar(0, cp_model.INT32_MAX, adjustment.value.name)
# Declaration
for declaration in Declaration:
actions[declaration] = model.NewBoolVar(declaration.value.name)
# Try non-Chimera declarations first
model.AddHint(actions[Declaration.CHIMERA], 0)
# Embellishment
for embellishment in Embellishment:
actions[embellishment] = model.NewIntVar(0, cp_model.INT32_MAX, embellishment.value.name)
# Buyer
for buyer in Buyer:
actions[buyer] = model.NewBoolVar(buyer.value.name)
# Mark unavailable buyers
model.AddAssumptions([
actions[buyer].Not()
for unavailable_buyer in OccasionalBuyer if unavailable_buyer != occasional_buyer
for buyer in unavailable_buyer.value if buyer not in desired_buyers
])
model.AddAssumptions([
actions[outmoded_fascination.value].Not()
for outmoded_fascination in DiplomatFascination if outmoded_fascination != diplomat_fascination and outmoded_fascination.value not in desired_buyers
])
# Restrict to desired buyers
if desired_buyers:
model.Add(cp_model.LinearExpr.Sum([actions[desired_buyer] for desired_buyer in desired_buyers]) == 1)
# One torso
model.Add(cp_model.LinearExpr.Sum([value for (key, value) in actions.items() if isinstance(key, Torso)]) == 1)
# One declaration
model.Add(cp_model.LinearExpr.Sum([value for (key, value) in actions.items() if isinstance(key, Declaration)]) == 1)
# One buyer
model.Add(cp_model.LinearExpr.Sum([value for (key, value) in actions.items() if isinstance(key, Buyer)]) == 1)
# Value calculation
original_value = model.NewIntVar(0, cp_model.INT32_MAX, 'original value')
model.Add(original_value == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.value for action in actions.keys()]))
multiplier = 115 if zoological_mania in [Declaration.FISH, Declaration.INSECT, Declaration.SPIDER] else 110
multiplied_value = model.NewIntVar(0, cp_model.INT32_MAX, 'multiplied value')
model.Add(multiplied_value == multiplier*original_value).OnlyEnforceIf(actions[zoological_mania])
model.Add(multiplied_value == 100*original_value).OnlyEnforceIf(actions[zoological_mania].Not())
value = model.NewIntVar(0, cp_model.INT32_MAX, 'value')
model.AddDivisionEquality(value, multiplied_value, 100)
del original_value, multiplier, multiplied_value
# Torso Style calculation
torso_style = model.NewIntVarFromDomain(cp_model.Domain.FromValues([torso.value.torso_style for torso in Torso]), 'torso style')
for torso, torso_variable in {key: value for (key, value) in actions.items() if isinstance(key, Torso)}.items():
model.Add(torso_style == torso.value.torso_style).OnlyEnforceIf(torso_variable)
# Skulls calculation
skulls = model.NewIntVar(0, cp_model.INT32_MAX, 'skulls')
model.Add(skulls == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.skulls for action in actions.keys()]))
# Arms calculation
arms = model.NewIntVar(0, cp_model.INT32_MAX, 'arms')
model.Add(arms == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.arms for action in actions.keys()]))
# Legs calculation
legs = model.NewIntVar(0, cp_model.INT32_MAX, 'legs')
model.Add(legs == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.legs for action in actions.keys()]))
# Tails calculation
tails = model.NewIntVar(0, cp_model.INT32_MAX, 'tails')
model.Add(tails == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.tails for action in actions.keys()]))
# Wings calculation
wings = model.NewIntVar(0, cp_model.INT32_MAX, 'wings')
model.Add(wings == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.wings for action in actions.keys()]))
# Fins calculation
fins = model.NewIntVar(0, cp_model.INT32_MAX, 'fins')
model.Add(fins == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.fins for action in actions.keys()]))
# Tentacles calculation
tentacles = model.NewIntVar(0, cp_model.INT32_MAX, 'tentacles')
model.Add(tentacles == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.tentacles for action in actions.keys()]))
# Amalgamy calculation
amalgamy = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'amalgamy')
model.Add(amalgamy == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.amalgamy for action in actions.keys()]))
# Antiquity calculation
antiquity = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'antiquity')
model.Add(antiquity == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.antiquity for action in actions.keys()]))
# Menace calculation
menace = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'menace')
model.Add(menace == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.menace for action in actions.keys()]))
# Implausibility calculation
implausibility = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'implausibility')
model.Add(implausibility == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.implausibility for action in actions.keys()]))
# Counter-church calculation
# Calculate amount of Counter-church from Holy Relics of the Thigh of Saint Fiacre
holy_relic = actions[Appendage.FIACRE_THIGH]
torso_style_divided_by_ten = model.NewIntVar(0, cp_model.INT32_MAX, 'torso style divided by ten')
model.AddDivisionEquality(torso_style_divided_by_ten, torso_style, 10)
holy_relic_counter_church = model.NewIntVar(0, cp_model.INT32_MAX, 'holy relic counter-church')
model.AddMultiplicationEquality(holy_relic_counter_church, [holy_relic, torso_style_divided_by_ten])
counter_church = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'counter-church')
model.Add(counter_church == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.counter_church for action in actions.keys()]) + holy_relic_counter_church)
del holy_relic, torso_style_divided_by_ten, holy_relic_counter_church
# Exhaustion calculation
exhaustion = model.NewIntVar(0, maximum_exhaustion, 'exhaustion')
# Exhaustion added by certain buyers
added_exhaustion = model.NewIntVar(0, maximum_exhaustion, 'added exhaustion')
model.Add(exhaustion == cp_model.LinearExpr.ScalProd(actions.values(), [action.value.exhaustion for action in actions.keys()]) + added_exhaustion)
# Profit intermediate variables
primary_revenue = model.NewIntVar(0, cp_model.INT32_MAX, 'primary revenue')
secondary_revenue = model.NewIntVar(0, cp_model.INT32_MAX, 'secondary revenue')
total_revenue = model.NewIntVar(0, cp_model.INT32_MAX*2, 'total revenue')
model.Add(total_revenue == cp_model.LinearExpr.Sum([primary_revenue, secondary_revenue]))
# Cost
# Calculate value of actions needed to sell the skeleton.
difficulty_level = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'difficulty level')
non_zero_difficulty_level = model.NewIntVar(1, cp_model.INT32_MAX, 'non-zero difficulty level')
model.AddMaxEquality(non_zero_difficulty_level, [difficulty_level, 1])
sale_actions_times_action_value = model.NewIntVar(0, cp_model.INT32_MAX, 'sale actions times action value')
model.AddDivisionEquality(sale_actions_times_action_value, model.NewConstant(round(DIFFICULTY_SCALER*shadowy_level*Cost.ACTION.value)), non_zero_difficulty_level)
abstract_sale_cost = model.NewIntVar(0, cp_model.INT32_MAX, 'abstract sale cost')
model.AddDivisionEquality(abstract_sale_cost, Cost.ACTION.value**2, sale_actions_times_action_value)
sale_cost = model.NewIntVar(0, cp_model.INT32_MAX, 'sale cost')
model.AddMaxEquality(sale_cost, [abstract_sale_cost, Cost.ACTION.value])
del non_zero_difficulty_level, sale_actions_times_action_value, abstract_sale_cost
# Calculate cost of adding joints
# This is a partial sum formula.
add_joints_amber_cost = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost')
add_joints = actions[Appendage.ADD_JOINTS]
base_joints = model.NewIntVar(0, cp_model.INT32_MAX, 'base joints')
model.Add(base_joints == cp_model.LinearExpr.ScalProd([value for (key, value) in actions.items() if isinstance(key, Torso)], [torso.value.limbs_needed + torso.value.arms + torso.value.legs + torso.value.wings + torso.value.fins + torso.value.tentacles for torso in Torso]))
add_joints_amber_cost_multiple = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple')
add_joints_amber_cost_multiple_first_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple first term')
model.AddGeneralMultiplicationEquality(add_joints_amber_cost_multiple_first_term, 25, base_joints, base_joints, add_joints)
add_joints_amber_cost_multiple_second_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple second term')
model.AddGeneralMultiplicationEquality(add_joints_amber_cost_multiple_second_term, 100, base_joints, add_joints, add_joints)
add_joints_amber_cost_multiple_third_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple third term')
model.AddGeneralMultiplicationEquality(add_joints_amber_cost_multiple_third_term, 100, base_joints, add_joints)
add_joints_amber_cost_multiple_fourth_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple fourth term')
add_joints_amber_cost_multiple_fourth_term_numerator = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple fourth term numerator')
add_joints_amber_cost_multiple_fourth_term_numerator_first_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple fourth term numerator first term')
model.AddGeneralMultiplicationEquality(add_joints_amber_cost_multiple_fourth_term_numerator_first_term, 400, add_joints, add_joints, add_joints)
model.Add(add_joints_amber_cost_multiple_fourth_term_numerator == add_joints_amber_cost_multiple_fourth_term_numerator_first_term + 200*add_joints)
model.AddDivisionEquality(add_joints_amber_cost_multiple_fourth_term, add_joints_amber_cost_multiple_fourth_term_numerator, 3)
del add_joints_amber_cost_multiple_fourth_term_numerator, add_joints_amber_cost_multiple_fourth_term_numerator_first_term
add_joints_amber_cost_multiple_fifth_term = model.NewIntVar(0, cp_model.INT32_MAX, 'add joints amber cost multiple fifth term')
model.AddGeneralMultiplicationEquality(add_joints_amber_cost_multiple_fifth_term, 200, add_joints, add_joints)
model.Add(add_joints_amber_cost_multiple == add_joints_amber_cost_multiple_first_term + add_joints_amber_cost_multiple_second_term - add_joints_amber_cost_multiple_third_term + add_joints_amber_cost_multiple_fourth_term - add_joints_amber_cost_multiple_fifth_term)
del add_joints_amber_cost_multiple_first_term, add_joints_amber_cost_multiple_second_term, add_joints_amber_cost_multiple_third_term, add_joints_amber_cost_multiple_fourth_term, add_joints_amber_cost_multiple_fifth_term
model.AddGeneralMultiplicationEquality(add_joints_amber_cost, add_joints, add_joints_amber_cost_multiple, Cost.WARM_AMBER.value)
del add_joints, add_joints_amber_cost_multiple
cost = model.NewIntVar(0, maximum_cost, 'cost')
model.Add(cost == cp_model.LinearExpr.ScalProd(actions.values(), [int(action.value.cost) for action in actions.keys()]) + add_joints_amber_cost + sale_cost)
del sale_cost, add_joints_amber_cost
# Type of skeleton
skeleton_in_progress = model.NewIntVar(0, cp_model.INT32_MAX, 'skeleton in progress')
# Chimera
model.Add(skeleton_in_progress == 100) \
.OnlyEnforceIf(actions[Declaration.CHIMERA])
# Humanoid
model.Add(skeleton_in_progress == 110) \
.OnlyEnforceIf(actions[Declaration.HUMANOID]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('humanoid antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 0])))
# Ancient Humanoid (UNCERTAIN)
model.Add(skeleton_in_progress == 111) \
.OnlyEnforceIf(actions[Declaration.HUMANOID]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('ancient humanoid antiquity', antiquity, cp_model.Domain.FromFlatIntervals([1, 5])))
# Neanderthal
model.Add(skeleton_in_progress == 112) \
.OnlyEnforceIf(actions[Declaration.HUMANOID]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('neanderthal antiquity', antiquity, cp_model.Domain.FromFlatIntervals([6, cp_model.INT_MAX])))
# Ape (UNCERTAIN)
model.Add(skeleton_in_progress == 120) \
.OnlyEnforceIf(actions[Declaration.APE]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('ape antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Primordial Ape (UNCERTAIN)
model.Add(skeleton_in_progress == 121) \
.OnlyEnforceIf(actions[Declaration.APE]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('primordial ape antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, cp_model.INT_MAX])))
# Monkey
model.Add(skeleton_in_progress == 125) \
.OnlyEnforceIf(actions[Declaration.MONKEY]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('monkey antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 0])))
# Catarrhine Monkey (UNCERTAIN)
model.Add(skeleton_in_progress == 126) \
.OnlyEnforceIf(actions[Declaration.MONKEY]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('catarrhine monkey 126 antiquity', antiquity, cp_model.Domain.FromFlatIntervals([1, 8])))
# Catarrhine Monkey
model.Add(skeleton_in_progress == 128) \
.OnlyEnforceIf(actions[Declaration.MONKEY]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('catarrhine monkey 128 antiquity', antiquity, cp_model.Domain.FromFlatIntervals([9, cp_model.INT_MAX])))
# Crocodile
model.Add(skeleton_in_progress == 160) \
.OnlyEnforceIf(actions[Declaration.REPTILE]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('crocodile antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Dinosaur
model.Add(skeleton_in_progress == 161) \
.OnlyEnforceIf(actions[Declaration.REPTILE]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('dinosaur antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, 4])))
# Mesosaur (UNCERTAIN)
model.Add(skeleton_in_progress == 162) \
.OnlyEnforceIf(actions[Declaration.REPTILE]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('mesosaur antiquity', antiquity, cp_model.Domain.FromFlatIntervals([5, cp_model.INT_MAX])))
# Toad
model.Add(skeleton_in_progress == 170) \
.OnlyEnforceIf(actions[Declaration.AMPHIBIAN]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('toad antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Primordial Amphibian
model.Add(skeleton_in_progress == 171) \
.OnlyEnforceIf(actions[Declaration.AMPHIBIAN]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('primordial amphibian antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, 4])))
# Temnospondyl
model.Add(skeleton_in_progress == 172) \
.OnlyEnforceIf(actions[Declaration.AMPHIBIAN]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('temnospondyl antiquity', antiquity, cp_model.Domain.FromFlatIntervals([5, cp_model.INT_MAX])))
# Owl
model.Add(skeleton_in_progress == 180) \
.OnlyEnforceIf(actions[Declaration.BIRD]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('owl antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Archaeopteryx
model.Add(skeleton_in_progress == 181) \
.OnlyEnforceIf(actions[Declaration.BIRD]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('archaeopteryx antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, 4])))
# Ornithomimosaur (UNCERTAIN)
model.Add(skeleton_in_progress == 182) \
.OnlyEnforceIf(actions[Declaration.BIRD]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('ornithomimosaur antiquity', antiquity, cp_model.Domain.FromFlatIntervals([5, cp_model.INT_MAX])))
# Lamprey
model.Add(skeleton_in_progress == 190) \
.OnlyEnforceIf(actions[Declaration.FISH]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('lamprey antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 0])))
# Coelacanth (UNCERTAIN)
model.Add(skeleton_in_progress == 191) \
.OnlyEnforceIf(actions[Declaration.FISH]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('coelacanth antiquity', antiquity, cp_model.Domain.FromFlatIntervals([1, cp_model.INT_MAX])))
# Spider (UNCERTAIN)
model.Add(skeleton_in_progress == 200) \
.OnlyEnforceIf(actions[Declaration.SPIDER]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('spider antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Primordial Orb-Weaver (UNCERTAIN)
model.Add(skeleton_in_progress == 201) \
.OnlyEnforceIf(actions[Declaration.SPIDER]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('primordial orb-weaver antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, 7])))
# Trigonotarbid
model.Add(skeleton_in_progress == 203) \
.OnlyEnforceIf(actions[Declaration.SPIDER]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('trigonotarbid antiquity', antiquity, cp_model.Domain.FromFlatIntervals([8, cp_model.INT_MAX])))
# Beetle (UNCERTAIN)
model.Add(skeleton_in_progress == 210) \
.OnlyEnforceIf(actions[Declaration.INSECT]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('beetle antiquity', antiquity, cp_model.Domain.FromFlatIntervals([cp_model.INT_MIN, 1])))
# Primordial Beetle (UNCERTAIN)
model.Add(skeleton_in_progress == 211) \
.OnlyEnforceIf(actions[Declaration.INSECT]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('primordial beetle antiquity', antiquity, cp_model.Domain.FromFlatIntervals([2, 6])))
# Rhyniognatha
model.Add(skeleton_in_progress == 212) \
.OnlyEnforceIf(actions[Declaration.INSECT]) \
.OnlyEnforceIf(model.NewIntermediateBoolVar('rhyniognatha antiquity', antiquity, cp_model.Domain.FromFlatIntervals([7, cp_model.INT_MAX])))
# Curator
model.Add(skeleton_in_progress == 300) \
.OnlyEnforceIf(actions[Declaration.CURATOR])
# Humanoid requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.HUMANOID])
model.Add(legs == 2).OnlyEnforceIf(actions[Declaration.HUMANOID])
model.Add(arms == 2).OnlyEnforceIf(actions[Declaration.HUMANOID])
model.AddLinearExpressionInDomain(torso_style, cp_model.Domain.FromFlatIntervals([10, 20])).OnlyEnforceIf(actions[Declaration.HUMANOID])
for prohibited_quality in [tails, fins, wings]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.HUMANOID])
# Ape requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.APE])
model.Add(arms == 4).OnlyEnforceIf(actions[Declaration.APE])
model.AddLinearExpressionInDomain(torso_style, cp_model.Domain.FromFlatIntervals([10, 20])).OnlyEnforceIf(actions[Declaration.APE])
for prohibited_quality in [legs, tails, fins, wings]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.APE])
# Monkey requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.MONKEY])
model.Add(arms == 4).OnlyEnforceIf(actions[Declaration.MONKEY])
model.Add(tails == 1).OnlyEnforceIf(actions[Declaration.MONKEY])
model.AddLinearExpressionInDomain(torso_style, cp_model.Domain.FromFlatIntervals([10, 20])).OnlyEnforceIf(actions[Declaration.MONKEY])
for prohibited_quality in [legs, fins, wings]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.MONKEY])
# Bird requirements
model.Add(legs == 2).OnlyEnforceIf(actions[Declaration.BIRD])
model.Add(wings == 2).OnlyEnforceIf(actions[Declaration.BIRD])
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.BIRD])
for prohibited_quality in [arms, fins]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.BIRD])
model.Add(tails < 2).OnlyEnforceIf(actions[Declaration.BIRD])
# Curator requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.CURATOR])
model.Add(arms == 2).OnlyEnforceIf(actions[Declaration.CURATOR])
model.Add(legs == 2).OnlyEnforceIf(actions[Declaration.CURATOR])
model.Add(wings == 2).OnlyEnforceIf(actions[Declaration.CURATOR])
for prohibited_quality in [fins, tails]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.CURATOR])
# Reptile requirements
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.REPTILE])
model.Add(tails == 1).OnlyEnforceIf(actions[Declaration.REPTILE])
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.REPTILE])
for prohibited_quality in [fins, wings, arms]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.REPTILE])
model.Add(legs < 5).OnlyEnforceIf(actions[Declaration.REPTILE])
# Amphibian requirements
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.AMPHIBIAN])
model.Add(legs == 4).OnlyEnforceIf(actions[Declaration.AMPHIBIAN])
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.AMPHIBIAN])
for prohibited_quality in [tails, fins, wings, arms]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.AMPHIBIAN])
# Fish requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.FISH])
model.Add(fins >= 2).OnlyEnforceIf(actions[Declaration.FISH])
model.Add(tails <= 1).OnlyEnforceIf(actions[Declaration.FISH])
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.FISH])
for prohibited_quality in [arms, legs, wings]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.FISH])
# Insect requirements
model.Add(skulls == 1).OnlyEnforceIf(actions[Declaration.INSECT])
model.Add(legs == 6).OnlyEnforceIf(actions[Declaration.INSECT])
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.INSECT])
for prohibited_quality in [arms, fins, tails]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.INSECT])
model.Add(wings < 5).OnlyEnforceIf(actions[Declaration.INSECT])
# Spider requirements
model.Add(legs == 8).OnlyEnforceIf(actions[Declaration.SPIDER])
model.Add(tails <= 1).OnlyEnforceIf(actions[Declaration.SPIDER])
model.Add(torso_style >= 20).OnlyEnforceIf(actions[Declaration.SPIDER])
for prohibited_quality in [skulls, arms, wings, fins]:
model.Add(prohibited_quality == 0).OnlyEnforceIf(actions[Declaration.SPIDER])
# Skeleton must have no unfilled skulls
model.Add(cp_model.LinearExpr.ScalProd(actions.values(), [action.value.skulls_needed for action in actions.keys()]) == 0)
# Skeleton must have no unfilled limbs
model.Add(cp_model.LinearExpr.ScalProd(actions.values(), [action.value.limbs_needed for action in actions.keys()]) == 0)
# Skeleton must have no unfilled tails, unless they were skipped
model.Add(cp_model.LinearExpr.ScalProd(actions.values(), [action.value.tails_needed for action in actions.keys()]) == 0).OnlyEnforceIf(actions[Appendage.SKIP_TAILS].Not())
model.Add(cp_model.LinearExpr.ScalProd(actions.values(), [action.value.tails_needed for action in actions.keys()]) > 0).OnlyEnforceIf(actions[Appendage.SKIP_TAILS])
# A Palaeontologist with Hoarding Propensities
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES])
model.Add(primary_revenue == value + 5).OnlyEnforceIf(actions[Buyer.A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES])
model.Add(secondary_revenue == 500).OnlyEnforceIf(actions[Buyer.A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES])
model.Add(difficulty_level == 40*implausibility).OnlyEnforceIf(actions[Buyer.A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_PALAEONTOLOGIST_WITH_HOARDING_PROPENSITIES])
# A Naive Collector
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_NAIVE_COLLECTOR])
value_remainder = model.NewIntVar(0, 249, '{}: {}'.format(Buyer.A_NAIVE_COLLECTOR.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 250)
model.Add(primary_revenue == value - value_remainder).OnlyEnforceIf(actions[Buyer.A_NAIVE_COLLECTOR])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.A_NAIVE_COLLECTOR])
model.Add(difficulty_level == 25*implausibility).OnlyEnforceIf(actions[Buyer.A_NAIVE_COLLECTOR])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_NAIVE_COLLECTOR])
del value_remainder
# A Familiar Bohemian Sculptress
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
model.Add(antiquity <= 0).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
value_remainder = model.NewIntVar(0, 249, '{}: {}'.format(Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 250)
model.Add(primary_revenue == value - value_remainder + 1000).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
model.Add(secondary_revenue == 250*counter_church).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
model.Add(difficulty_level == 50*implausibility).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_FAMILIAR_BOHEMIAN_SCULPTRESS])
del value_remainder
# A Pedagogically Inclined Grandmother
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
model.Add(menace <= 0).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 1000).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
model.Add(difficulty_level == 50*implausibility).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_PEDAGOGICALLY_INCLINED_GRANDMOTHER])
del value_remainder
# A Theologian of the Old School
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
model.Add(amalgamy <= 0).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
value_remainder = model.NewIntVar(0, 249, '{}: {}'.format(Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 250)
model.Add(primary_revenue == value - value_remainder + 1000).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
model.Add(difficulty_level == 50*implausibility).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_THEOLOGIAN_OF_THE_OLD_SCHOOL])
del value_remainder
# An Enthusiast of the Ancient World
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
model.Add(antiquity > 0).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
model.Add(secondary_revenue == 250*antiquity + (250 if bone_market_fluctuations == Fluctuation.ANTIQUITY else 0)).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
model.Add(difficulty_level == 45*implausibility).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_OF_THE_ANCIENT_WORLD])
del value_remainder
# Mrs Plenty
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
model.Add(menace > 0).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.MRS_PLENTY.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
model.Add(secondary_revenue == 250*menace).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
model.Add(difficulty_level == 45*implausibility).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.MRS_PLENTY])
del value_remainder
# A Tentacled Servant
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
model.Add(amalgamy > 0).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_TENTACLED_SERVANT.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
model.Add(secondary_revenue == 250*amalgamy + (250 if bone_market_fluctuations == Fluctuation.AMALGAMY else 0)).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
model.Add(difficulty_level == 45*implausibility).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_TENTACLED_SERVANT])
del value_remainder
# An Investment-Minded Ambassador
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
model.Add(antiquity > 0).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
antiquity_squared = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INVESTMENT_MINDED_AMBASSADOR.name, 'antiquity squared'))
model.AddMultiplicationEquality(antiquity_squared, [antiquity, antiquity])
tailfeathers = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INVESTMENT_MINDED_AMBASSADOR.name, 'tailfeathers'))
if bone_market_fluctuations == Fluctuation.ANTIQUITY:
model.AddApproximateExponentiationEquality(tailfeathers, antiquity, 2.1, MAXIMUM_ATTRIBUTE)
else:
model.Add(tailfeathers == antiquity_squared).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.AN_INVESTMENT_MINDED_AMBASSADOR.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
extra_value = model.NewIntermediateBoolVar('{}: {}'.format(Buyer.AN_INVESTMENT_MINDED_AMBASSADOR.name, 'extra value'), value_remainder, cp_model.Domain.FromFlatIntervals([0, cp_model.INT_MAX]))
model.Add(primary_revenue == value + 50*extra_value + 250).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
model.Add(secondary_revenue == 250*tailfeathers).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INVESTMENT_MINDED_AMBASSADOR.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, antiquity_squared, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.AN_INVESTMENT_MINDED_AMBASSADOR])
del antiquity_squared, tailfeathers, value_remainder, extra_value, derived_exhaustion
# A Teller of Terrors
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
model.Add(menace > 0).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
menace_squared = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TELLER_OF_TERRORS.name, 'menace squared'))
model.AddMultiplicationEquality(menace_squared, [menace, menace])
feathers = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TELLER_OF_TERRORS.name, 'feathers'))
if bone_market_fluctuations == Fluctuation.MENACE:
model.AddApproximateExponentiationEquality(feathers, menace, 2.1, MAXIMUM_ATTRIBUTE)
else:
model.Add(feathers == menace_squared).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
value_remainder = model.NewIntVar(0, 9, '{}: {}'.format(Buyer.A_TELLER_OF_TERRORS.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 10)
model.Add(primary_revenue == value - value_remainder + 50).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
model.Add(secondary_revenue == 50*feathers).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TELLER_OF_TERRORS.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, menace_squared, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_TELLER_OF_TERRORS])
del menace_squared, feathers, value_remainder, derived_exhaustion
# A Tentacled Entrepreneur
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
model.Add(amalgamy > 0).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
amalgamy_squared = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TENTACLED_ENTREPRENEUR.name, 'amalgamy squared'))
model.AddMultiplicationEquality(amalgamy_squared, [amalgamy, amalgamy])
final_breaths = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TENTACLED_ENTREPRENEUR.name, 'final breaths'))
if bone_market_fluctuations == Fluctuation.AMALGAMY:
model.AddApproximateExponentiationEquality(final_breaths, amalgamy, 2.1, MAXIMUM_ATTRIBUTE)
else:
model.Add(final_breaths == amalgamy_squared).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_TENTACLED_ENTREPRENEUR.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
model.Add(secondary_revenue == 50*final_breaths).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_TENTACLED_ENTREPRENEUR.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, amalgamy_squared, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_TENTACLED_ENTREPRENEUR])
del amalgamy_squared, final_breaths, value_remainder, derived_exhaustion
# An Author of Gothic Tales
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
model.Add(antiquity > 0).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
model.Add(menace > 0).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
antiquity_times_menace = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_AUTHOR_OF_GOTHIC_TALES.name, 'antiquity times menace'))
model.AddMultiplicationEquality(antiquity_times_menace, [antiquity, menace])
antiquity_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_AUTHOR_OF_GOTHIC_TALES.name, 'antiquity fluctuation bonus'))
model.AddDivisionEquality(antiquity_fluctuation_bonus, antiquity, 2)
menace_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_AUTHOR_OF_GOTHIC_TALES.name, 'menace fluctuation bonus'))
model.AddDivisionEquality(menace_fluctuation_bonus, menace, 2)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.AN_AUTHOR_OF_GOTHIC_TALES.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
model.Add(secondary_revenue == 250*antiquity_times_menace + 250*(antiquity_fluctuation_bonus if bone_market_fluctuations == Fluctuation.ANTIQUITY else menace_fluctuation_bonus if bone_market_fluctuations == Fluctuation.MENACE else 0)).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_AUTHOR_OF_GOTHIC_TALES.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, antiquity_times_menace, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.AN_AUTHOR_OF_GOTHIC_TALES])
del antiquity_times_menace, antiquity_fluctuation_bonus, menace_fluctuation_bonus, value_remainder, derived_exhaustion
# A Zailor with Particular Interests
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
model.Add(antiquity > 0).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
model.Add(amalgamy > 0).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
amalgamy_times_antiquity = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS.name, 'amalgamy times antiquity'))
model.AddMultiplicationEquality(amalgamy_times_antiquity, [amalgamy, antiquity])
amalgamy_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS.name, 'amalgamy fluctuation bonus'))
model.AddDivisionEquality(amalgamy_fluctuation_bonus, amalgamy, 2)
antiquity_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS.name, 'antiquity fluctuation bonus'))
model.AddDivisionEquality(antiquity_fluctuation_bonus, antiquity, 2)
value_remainder = model.NewIntVar(0, 9, '{}: {}'.format(Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 10)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
model.Add(secondary_revenue == 250*amalgamy_times_antiquity + 250*(amalgamy_fluctuation_bonus if bone_market_fluctuations == Fluctuation.AMALGAMY else antiquity_fluctuation_bonus if bone_market_fluctuations == Fluctuation.ANTIQUITY else 0)).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, amalgamy_times_antiquity, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_ZAILOR_WITH_PARTICULAR_INTERESTS])
del amalgamy_times_antiquity, amalgamy_fluctuation_bonus, antiquity_fluctuation_bonus, value_remainder, derived_exhaustion
# A Rubbery Collector
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
model.Add(amalgamy > 0).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
model.Add(menace > 0).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
amalgamy_times_menace = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_RUBBERY_COLLECTOR.name, 'amalgamy times menace'))
model.AddMultiplicationEquality(amalgamy_times_menace, [amalgamy, menace])
amalgamy_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_RUBBERY_COLLECTOR.name, 'amalgamy fluctuation bonus'))
model.AddDivisionEquality(amalgamy_fluctuation_bonus, amalgamy, 2)
menace_fluctuation_bonus = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_RUBBERY_COLLECTOR.name, 'menace fluctuation bonus'))
model.AddDivisionEquality(menace_fluctuation_bonus, menace, 2)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_RUBBERY_COLLECTOR.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
model.Add(secondary_revenue == 250*amalgamy_times_menace + 250*(amalgamy_fluctuation_bonus if bone_market_fluctuations == Fluctuation.AMALGAMY else menace_fluctuation_bonus if bone_market_fluctuations == Fluctuation.MENACE else 0)).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
model.Add(difficulty_level == 75*implausibility).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_RUBBERY_COLLECTOR.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, amalgamy_times_menace, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_RUBBERY_COLLECTOR])
del amalgamy_times_menace, amalgamy_fluctuation_bonus, menace_fluctuation_bonus, value_remainder, derived_exhaustion
# A Constable
model.AddLinearExpressionInDomain(skeleton_in_progress, cp_model.Domain.FromFlatIntervals([110, 119])).OnlyEnforceIf(actions[Buyer.A_CONSTABLE])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_CONSTABLE.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 1000).OnlyEnforceIf(actions[Buyer.A_CONSTABLE])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.A_CONSTABLE])
model.Add(difficulty_level == 50*implausibility).OnlyEnforceIf(actions[Buyer.A_CONSTABLE])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_CONSTABLE])
del value_remainder
# An Enthusiast in Skulls
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
model.Add(skulls >= 2).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
extra_skulls = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_ENTHUSIAST_IN_SKULLS.name, 'extra skulls'))
model.Add(extra_skulls == skulls - 1).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
vital_intelligence = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_ENTHUSIAST_IN_SKULLS.name, 'vital intelligence'))
model.AddApproximateExponentiationEquality(vital_intelligence, extra_skulls, 1.8, MAXIMUM_ATTRIBUTE)
model.Add(primary_revenue == value).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
model.Add(secondary_revenue == 1250*vital_intelligence).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
model.Add(difficulty_level == 60*implausibility).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_ENTHUSIAST_IN_SKULLS.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, vital_intelligence, 4)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.AN_ENTHUSIAST_IN_SKULLS])
del extra_skulls, vital_intelligence, derived_exhaustion
# A Dreary Midnighter
model.AddLinearExpressionInDomain(skeleton_in_progress, cp_model.Domain.FromFlatIntervals([110, 299])).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
model.Add(amalgamy <= 0).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
model.Add(counter_church <= 0).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
value_remainder = model.NewIntVar(0, 2, '{}: {}'.format(Buyer.A_DREARY_MIDNIGHTER.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 3)
model.Add(primary_revenue == value - value_remainder + 300).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
model.Add(secondary_revenue == 250).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
model.Add(difficulty_level == 100*implausibility).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.A_DREARY_MIDNIGHTER])
del value_remainder
# A Colourful Phantasist - Bazaarine
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
model.Add(implausibility >= 2).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
model.Add(amalgamy >= 4).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
amalgamy_times_implausibility = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE.name, 'amalgamy times implausibility'))
model.AddMultiplicationEquality(amalgamy_times_implausibility, [amalgamy, implausibility])
bazaarine_poetry = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE.name, 'bazaarine poetry'))
model.Add(bazaarine_poetry == amalgamy_times_implausibility + 1)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
model.Add(secondary_revenue == 250*bazaarine_poetry).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, bazaarine_poetry, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_BAZAARINE])
del amalgamy_times_implausibility, bazaarine_poetry, value_remainder, derived_exhaustion
# A Colourful Phantasist - Nocturnal
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
model.Add(implausibility >= 2).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
model.Add(menace >= 4).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
menace_times_implausibility = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL.name, 'menace times implausibility'))
model.AddMultiplicationEquality(menace_times_implausibility, [menace, implausibility])
stygian_ivory = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL.name, 'stygian ivory'))
model.Add(stygian_ivory == menace_times_implausibility + 1)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
model.Add(secondary_revenue == 250*stygian_ivory).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, stygian_ivory, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_NOCTURNAL])
del menace_times_implausibility, stygian_ivory, value_remainder, derived_exhaustion
# A Colourful Phantasist - Celestial
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
model.Add(implausibility >= 2).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
model.Add(antiquity >= 4).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
antiquity_times_implausibility = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL.name, 'antiquity times implausibility'))
model.AddMultiplicationEquality(antiquity_times_implausibility, [antiquity, implausibility])
knob_of_scintillack = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL.name, 'knob of scintillack'))
model.Add(knob_of_scintillack == antiquity_times_implausibility + 1)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 100).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
model.Add(secondary_revenue == 250*knob_of_scintillack).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, knob_of_scintillack, 20)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.A_COLOURFUL_PHANTASIST_CELESTIAL])
del antiquity_times_implausibility, knob_of_scintillack, value_remainder, derived_exhaustion
# An Ingenuous Malacologist
model.Add(tentacles >= 4).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
exponentiated_tentacles = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INGENUOUS_MALACOLOGIST.name, 'exponentiated tentacles'))
model.AddApproximateExponentiationEquality(exponentiated_tentacles, tentacles, 2.2, MAXIMUM_ATTRIBUTE)
collated_research = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INGENUOUS_MALACOLOGIST.name, 'collated research'))
model.AddDivisionEquality(collated_research, exponentiated_tentacles, 5)
value_remainder = model.NewIntVar(0, 249, '{}: {}'.format(Buyer.AN_INGENUOUS_MALACOLOGIST.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 250)
model.Add(primary_revenue == value - value_remainder + 250).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
model.Add(secondary_revenue == 250*collated_research).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
model.Add(difficulty_level == 60*implausibility).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_INGENUOUS_MALACOLOGIST.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, exponentiated_tentacles, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.AN_INGENUOUS_MALACOLOGIST])
del exponentiated_tentacles, collated_research, value_remainder, derived_exhaustion
# An Enterprising Boot Salesman
model.Add(menace <= 0).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
model.Add(amalgamy <= 0).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
model.Add(legs >= 4).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
diamonds = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_ENTERPRISING_BOOT_SALESMAN.name, 'diamonds'))
model.AddApproximateExponentiationEquality(diamonds, legs, 2.2, MAXIMUM_ATTRIBUTE)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.AN_ENTERPRISING_BOOT_SALESMAN.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
model.Add(secondary_revenue == 50*diamonds).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.AN_ENTERPRISING_BOOT_SALESMAN.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, diamonds, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.AN_ENTERPRISING_BOOT_SALESMAN])
del diamonds, value_remainder, derived_exhaustion
# The Dumbwaiter of Balmoral
model.AddLinearExpressionInDomain(skeleton_in_progress, cp_model.Domain.FromFlatIntervals([180, 189])).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
model.Add(value >= 250).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
value_remainder = model.NewIntVar(0, 249, '{}: {}'.format(Buyer.THE_DUMBWAITER_OF_BALMORAL.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 250)
model.Add(primary_revenue == value - value_remainder).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
model.Add(difficulty_level == 200).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.THE_DUMBWAITER_OF_BALMORAL])
del value_remainder
# The Carpenter's Granddaughter
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
model.Add(value >= 30000).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
model.Add(primary_revenue == 31250).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
model.Add(secondary_revenue == 0).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
model.Add(difficulty_level == 100*implausibility).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
model.Add(added_exhaustion == 0).OnlyEnforceIf(actions[Buyer.THE_CARPENTERS_GRANDDAUGHTER])
# The Trifling Diplomat - Antiquity
model.Add(skeleton_in_progress >= 100).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
model.Add(antiquity >= 5).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
antiquity_squared = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY.name, 'antiquity squared'))
model.AddMultiplicationEquality(antiquity_squared, [antiquity, antiquity])
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 50).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
model.Add(secondary_revenue == 50*antiquity_squared).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
# TODO: Add actual difficulty level
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, antiquity_squared, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_ANTIQUITY])
del antiquity_squared, value_remainder, derived_exhaustion
# The Trifling Diplomat - Bird
model.AddLinearExpressionInDomain(skeleton_in_progress, cp_model.Domain.FromFlatIntervals([180, 189])).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_BIRD])
non_negative_amalgamy = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'non-negative amalgamy'))
model.AddMaxEquality(non_negative_amalgamy, [amalgamy, 0])
non_negative_menace = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'non-negative menace'))
model.AddMaxEquality(non_negative_menace, [menace, 0])
non_negative_antiquity = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'non-negative antiquity'))
model.AddMaxEquality(non_negative_antiquity, [antiquity, 0])
compromising_documents = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'compromising documents'))
model.AddGeneralMultiplicationEquality(compromising_documents, non_negative_amalgamy, non_negative_menace, non_negative_antiquity)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 50).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_BIRD])
model.Add(secondary_revenue == 50*compromising_documents).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_BIRD])
# TODO: Add actual difficulty level
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_BIRD])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_BIRD.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, compromising_documents, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_BIRD])
del non_negative_amalgamy, non_negative_menace, non_negative_antiquity, compromising_documents, value_remainder, derived_exhaustion
# The Trifling Diplomat - Fish
model.AddLinearExpressionInDomain(skeleton_in_progress, cp_model.Domain.FromFlatIntervals([190, 199])).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_FISH])
non_negative_amalgamy = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'non-negative amalgamy'))
model.AddMaxEquality(non_negative_amalgamy, [amalgamy, 0])
non_negative_menace = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'non-negative menace'))
model.AddMaxEquality(non_negative_menace, [menace, 0])
non_negative_antiquity = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'non-negative antiquity'))
model.AddMaxEquality(non_negative_antiquity, [antiquity, 0])
compromising_documents = model.NewIntVar(0, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'compromising documents'))
model.AddGeneralMultiplicationEquality(compromising_documents, non_negative_amalgamy, non_negative_menace, non_negative_antiquity)
value_remainder = model.NewIntVar(0, 49, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'value remainder'))
model.AddModuloEquality(value_remainder, value, 50)
model.Add(primary_revenue == value - value_remainder + 50).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_FISH])
model.Add(secondary_revenue == 50*compromising_documents).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_FISH])
# TODO: Add actual difficulty level
model.Add(difficulty_level == 0).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_FISH])
# The indirection is necessary for applying an enforcement literal
derived_exhaustion = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, '{}: {}'.format(Buyer.THE_TRIFLING_DIPLOMAT_FISH.name, 'derived exhaustion'))
model.AddDivisionEquality(derived_exhaustion, compromising_documents, 100)
model.Add(added_exhaustion == derived_exhaustion).OnlyEnforceIf(actions[Buyer.THE_TRIFLING_DIPLOMAT_FISH])
del non_negative_amalgamy, non_negative_menace, non_negative_antiquity, compromising_documents, value_remainder, derived_exhaustion
# Maximize profit margin
net_profit = model.NewIntVar(cp_model.INT32_MIN, cp_model.INT32_MAX, 'net profit')
model.Add(net_profit == total_revenue - cost)
# This is necessary to preserve some degree of precision after dividing
multiplied_net_profit = model.NewIntVar(cp_model.INT32_MIN*PROFIT_MARGIN_MULTIPLIER, cp_model.INT32_MAX*PROFIT_MARGIN_MULTIPLIER, 'multiplied net profit')
model.AddMultiplicationEquality(multiplied_net_profit, [net_profit, PROFIT_MARGIN_MULTIPLIER])
absolute_multiplied_net_profit = model.NewIntVar(0, cp_model.INT32_MAX*PROFIT_MARGIN_MULTIPLIER, 'absolute multiplied net profit')
model.AddAbsEquality(absolute_multiplied_net_profit, multiplied_net_profit)
absolute_profit_margin = model.NewIntVar(cp_model.INT32_MIN*PROFIT_MARGIN_MULTIPLIER, cp_model.INT32_MAX*PROFIT_MARGIN_MULTIPLIER, 'absolute profit margin')
model.AddDivisionEquality(absolute_profit_margin, absolute_multiplied_net_profit, total_revenue)
profit_margin = model.NewIntVar(cp_model.INT32_MIN*PROFIT_MARGIN_MULTIPLIER, cp_model.INT32_MAX*PROFIT_MARGIN_MULTIPLIER, 'profit margin')
positive_net_profit = model.NewIntermediateBoolVar('positive net profit', net_profit, cp_model.Domain.FromFlatIntervals([0, cp_model.INT_MAX]))
model.Add(profit_margin == absolute_profit_margin).OnlyEnforceIf(positive_net_profit)
model.Add(profit_margin == absolute_profit_margin*-1).OnlyEnforceIf(positive_net_profit.Not())
del multiplied_net_profit, absolute_multiplied_net_profit, absolute_profit_margin, positive_net_profit
model.Maximize(profit_margin)
class SkeletonPrinter(cp_model.CpSolverSolutionCallback):
"""A class that prints the steps that comprise a skeleton as well as relevant attributes."""
def __init__(self):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__solution_count = 0
def PrintableSolution(self, solver = None):
"""Print the latest solution of a provided solver."""
output = ""
# Allows use as a callback
if solver is None:
solver = self
for action in actions.keys():
for _ in range(int(solver.Value(actions[action]))):
output += str(action) + "\n"
output += "\nProfit: £{:,.2f}\n".format(solver.Value(net_profit)/100)
output += "Profit Margin: {:+,.2%}\n".format(solver.Value(profit_margin)/PROFIT_MARGIN_MULTIPLIER)
output += "\nTotal Revenue: £{:,.2f}\n".format(solver.Value(total_revenue)/100)
output += "Primary Revenue: £{:,.2f}\n".format(solver.Value(primary_revenue)/100)
output += "Secondary Revenue: £{:,.2f}\n".format(solver.Value(secondary_revenue)/100)
output += "\nCost: £{:,.2f}\n".format(solver.Value(cost)/100)
output += "\nValue: £{:,.2f}\n".format(solver.Value(value)/100)
output += "Amalgamy: {:n}\n".format(solver.Value(amalgamy))
output += "Antiquity: {:n}\n".format(solver.Value(antiquity))
output += "Menace: {:n}\n".format(solver.Value(menace))
output += "Counter-Church: {:n}\n".format(solver.Value(counter_church))
output += "Implausibility: {:n}\n".format(solver.Value(implausibility))
output += "\nExhaustion: {:n}".format(solver.Value(exhaustion))
return output
def OnSolutionCallback(self):
self.__solution_count += 1
# Prints current solution to window
stdscr.clear()
stdscr.addstr(self.PrintableSolution())
stdscr.addstr(stdscr.getmaxyx()[0] - 1, 0, "Skeleton #{:n}".format(self.__solution_count))
stdscr.refresh()
def SolutionCount(self):
return self.__solution_count
printer = SkeletonPrinter()
solver = cp_model.CpSolver()
solver.parameters.num_search_workers = workers
solver.parameters.max_time_in_seconds = time_limit
# There's no window in verbose mode
if stdscr is None:
solver.parameters.log_search_progress = True
solver.Solve(model)
else:
solver.SolveWithSolutionCallback(model, printer)
status = solver.StatusName()
if status == 'INFEASIBLE':
raise RuntimeError("There is no satisfactory skeleton.")
elif status == 'FEASIBLE':
print("WARNING: skeleton may be suboptimal.")
elif status != 'OPTIMAL':
raise RuntimeError("Unknown status returned: {}.".format(status))
return printer.PrintableSolution(solver)
class EnumAction(argparse.Action):
def __init__(self, **kwargs):
# Pop off the type value
enum = kwargs.pop('type', None)
nargs = kwargs.pop('nargs', None)
# Generate choices from the Enum
kwargs.setdefault('choices', tuple(member.name.lower() for member in enum))
super(EnumAction, self).__init__(**kwargs)
self._enum = enum
self._nargs = nargs
def __call__(self, parser, namespace, values, option_string=None):
# Convert value back into an Enum
enum = self._enum[values.upper()]
if self._nargs is None or self._nargs == '?':
setattr(namespace, self.dest, enum)
else:
items = getattr(namespace, self.dest, list())
items.append(enum)
setattr(namespace, self.dest, items)
def main():
parser = argparse.ArgumentParser(
prog='Bone Market Solver',
description="Devise the optimal skeleton at the Bone Market in Fallen London.",
argument_default=argparse.SUPPRESS,
)
parser.add_argument(
"-s", "--shadowy",
type=int,
required=True,
help="the effective level of Shadowy used for selling to buyers",
dest='shadowy_level'
)
parser.add_argument(
"-f", "--bone-market-fluctuations",
action=EnumAction,
type=Fluctuation,
required=True,
help="current value of Bone Market Fluctuations, which grants various bonuses to certain buyers",
dest='bone_market_fluctuations'
)
parser.add_argument(
"-m", "--zoological-mania",
action=EnumAction,
type=Declaration,
required=True,
help="current value of Zoological Mania, which grants a percentage bonus to value for a certain declaration",
dest='zoological_mania'
)
buyer = parser.add_mutually_exclusive_group()
transient_buyers = buyer.add_argument_group()
transient_buyers.add_argument(
"-o", "--occasional-buyer",
action=EnumAction,
type=OccasionalBuyer,
help="current value of Occasional Buyer, which allows access to a buyer that is not otherwise available",
dest='occasional_buyer'
)
transient_buyers.add_argument(
"-d", "--diplomat-fascination",
action=EnumAction,
type=DiplomatFascination,
help="current value of The Diplomat's Current Fascination, which determines what the Trifling Diplomat is interested in",
dest='diplomat_fascination'
)
buyer.add_argument(
"-b", "--buyer", "--desired-buyer",
action=EnumAction,
nargs='+',
type=Buyer,
help="specific buyer that skeleton should be designed for (if declared repeatedly, will choose from among those provided)",
dest='desired_buyers'
)
parser.add_argument(
"-c", "--cost", "--maximum-cost",
type=int,
help="maximum number of pennies that should be invested in skeleton",
dest='maximum_cost'
)
parser.add_argument(
"-e", "--exhaustion", "--maximum_exhaustion",
type=int,
help="maximum exhaustion that skeleton should generate",
dest='maximum_exhaustion'
)
parser.add_argument(
"-v", "--verbose",
nargs='?',
const=True,
default=False,
type=bool,
help="whether the solver should output search progress rather than showing intermediate solutions",
dest='verbose'
)
parser.add_argument(
"-t", "--time-limit",
type=float,
help="maximum number of seconds that solver runs for",
dest='time_limit'
)
parser.add_argument(
"-w", "--workers",
type=int,
help="number of search worker threads to run in parallel (default: one worker per available CPU thread)",
dest='workers'
)
args = parser.parse_args()
arguments = vars(args)
if not arguments.pop('verbose'):
def WrappedSolve(stdscr, arguments):
# Prevents crash if window is too small to fit text
stdscr.scrollok(True)
# Move stdscr to last position
arguments['stdscr'] = stdscr
return Solve(**arguments)
print(curses.wrapper(WrappedSolve, arguments))
else:
print(Solve(**arguments))
if __name__ == '__main__':
main()